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a b s t r a c t

Motivated by Fichera’s idea for regularizing the rank-deficiency model, we derive the free–free flexibility
matrices by inverting the bordered stiffness matrix. The singular stiffness matrix of a free–free structure
is expanded to a bordered matrix by adding n slack variables, where n is the nullity of the singular stiff-
ness matrix. Besides, the corresponding n constraints are accompanied to result in a nonsingular matrix.
The constraints filter out the homogeneous solution for the regularized solution. By inverting the nonsin-
gular matrix, we can obtain the free–free flexibility matrix from the submatrices. The value of the extra
degree of freedom shows the role of no solution (nonzero case) or infinite solution (zero case) with
respect to the loading vector. After constructing the bordered system, the equilibrium of the specified
force and the compatibility of the specified displacement can be tested according the zero slack variable.
Similarly, the free–free flexibility matrix is obtained from the free–free stiffness matrix. Finally, four
examples, a rod with symmetric stiffness, a plane truss, a beam and a bar with unsymmetric stiffness,
were demonstrated to see the validity of the present formulation.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There are two kinds of rank-deficiency problems in the bound-
ary element method (BEM) or finite element method (FEM). Phys-
ically speaking, a rigid body mode exists in a free–free structure for
structural mechanics. This means that the free–free stiffness
matrix is singular in companion with zero eigenvalues (singular
values). No matter which numerical method, BEM or FEM, is
employed, the obtained influence matrix (stiffness matrix) is rank
deficient. Such outcome occurs naturally in the Neumann problem
or the traction problem for potential and elasticity problems,
respectively [1–7].

Regarding the Dirichlet problem in potential theory or con-
strained structure in elasticity, the solution is mathematically
unique. However, this yields rank-deficiency problem if a single-
layer potential approach (indirect BEM) is employed to solve it
for a critical scale (degenerate scale). To avoid this unreasonable
model, Fichera proposed a well-posed model to make it full rank
[8]. Two steps are utilized at the same time. One is to introduce
a free constant field. The other is to provide a corresponding con-
straint. After discretization, the singular system is transformed to

a nonsingular bordered system. It is interesting to find that the dis-
cretization system to promote the full rank is the same as the self-
regularized linear algebraic system for deriving the flexibility of a
free–free body. Following this finding, we will drive the free–free
flexibility in the way of inverting the full-rank bordered matrix.
On the contrary, finding the free–free stiffness from the free–free
flexibility is also discussed. Physical rigid-body modes for the dis-
placement as well as nonphysical spurious force modes correspond-
ing to zero singular values are found. The spurious mode also
appears in the finite element method. For example, hourglass mode
occurs in the reduced integration to soften the shear locking. This
zero-energy mode is not physically realizable but due to mathemat-
ics. The nonphysical outcome due to mathematics (rank deficiency)
needs regularization in the mathematical model. Table 1 indicates
the relation between mathematics and structural mechanics. Zero
eigenvalues imply the rigid body mode (physics) and spurious mode
(mathematics). Bordered matrix introduces an extra degree of
freedom and transforms a singular matrix to be a nonsingular one.
Free–free structure yields a rank-deficiency matrix.

Regarding the inverse of a singular matrix, Felippa et al. [1] have
introduced the dual of free–free stiffness K and flexibility F.
They also emphasized the potential applications of free–free flexi-
bility for substructure-based solution algorithm in the direct flex-
ibility matrix. Construction of free–free flexibility matrices can be
derived by using the generalized inverse of stiffness. Derivation
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of flexibility and stiffness matrices of rod and beam was also
investigated by using the dual BEM [6]. Generalized inverse has
been studied by Fredholm, Moore and Penrose in the twenty cen-
tury. Generalized inverses was mathematically studied by using
the bordered matrix [9]. However, its engineering applications in
structural mechanics were not noticed in that book. In this paper,
the proposed self-regularized approach is similar to the Moore–
Penrose/Singular Value Decomposition (SVD) approach for com-
puting pseudo-inverses of rank-deficient matrices. But the main
difference is that we add a slack variable and a corresponding con-
straint in the present method. This idea was similarly used in the
optimization theory by adding n slack variables. Besides, the flex-
ibility matrix is more efficient in the substructure method, espe-
cially in the case of replacement of failure element. The idea was
addressed in the Felippa’s paper [10].

In non-linear geometry analysis, the arc length method was
introduced in the analysis which is similar to the present slack var-
iable. Introducing a slack variable is very popular to transform an
inequality to an equation in the optimization theory. The same
algorithm in this article is the addition of one degree of freedom
in accompany with an extra equation. An incremental force parallel
to the critical eigenvectors of the tangential stiffness matrix is sep-
arately treated. Using eigenvector projections, we can improve
convergence in non-linear finite element equilibrium iterations
[11,12]. Although with other objectives in [13], very similar analy-
sis and derivation methods were used in the context of ‘eigenvec-
tor projections’, in the stabilization of non-linear equilibrium
iteration methods already in the 1980s. In those, the parts of an
incremental force parallel to the critical eigenvectors of the tan-
gential stiffness matrix are separately treated, which is a very sim-
ilar idea as in this paper. The treatment distinguishes and
separately handles two components of the ‘load vector’, and
thereby also the ‘displacement response’: one parallel to the
critical/singular directions, and one orthogonal part. This is a fun-
damental fact of structural response, which is not related to the
need to invert the structural stiffness matrix or parts of it. It also
gives a way to explain the introduced unknown coefficients. It cor-
responds to the value c in this paper. Eigenvector projection pro-
vides an efficient way to improve the stability in the iterations
for the choice of the optimal corrections. Checking eigenvectors
corresponding to near-zero eigenvalues is very important for
selecting the damping. In our approach, the singular vector of cor-
responding to zero singular value provides us the row and column
vectors in the bordered matrices, where the unknown coefficient c
is introduced.

Based on the structures with symmetry, group-theoretical
insight and graph theory can decompose the system to a small
one and bypass intrinsic singularities. Related works can be found
in the four references [14–17]. However, our approach introduces a
slack variable as well as a corresponding constraint to deal with
rank-deficient matrices.

In this paper, we derive the free–free flexibility matrix directly
from the physical concept as well as the mathematical technique of
bordered matrix in the linear algebra. Four examples, a rod with

symmetric stiffness, a plane truss, a beam and a bar with unsym-
metric stiffness, were demonstrated to see the validity of the pres-
ent formulation.

2. Formulation

In potential theory, the single-layer representation model is
often used to solve the boundary value problem as shown below:

uðxÞ ¼
Z

B
Uðx; sÞ/ðsÞdBðsÞ; x 2 D; ð1Þ

where u(x) is the potential field, /(s) is the unknown boundary den-
sity, U(x, s) is the fundamental solution and B is the boundary of the
domain D.

However, Eq. (1) may fail for the Dirichlet problem with a
specific scale (degenerate scale). To overcome this ill-posed
(rank-deficiency) model, Fichera proposed a regularized formula-
tion by simultaneously adding a constant and an extra constraint
as shown below:

uðxÞ ¼
Z

B
Uðx; sÞ/rðsÞdBðsÞ þ c; x 2 D; ð2Þ

Z
B

/rðsÞdBðsÞ ¼ 0; s 2 B: ð3Þ

After discretizing the boundary by using the constant element,
Eq. (1) reduces to

U /
�
¼ b� : ð4Þ

By employing the boundary element implementation, Eqs. (2)
and (3) together yield

U f1g
flg 0

� � /
�

r

c

( )
¼

b�
0

( )
; ð5Þ

where U is the influence matrix and {l} is the vector of length for
boundary elements. It is noted that /

�
in Eq. (4) is the unregularized

unknown vector, while /r in Eq. (5) is the regularized unknown
vector.

By using analogy between the singular stiffness matrix for
structural mechanics and the influence matrix for the indirect
BEM as shown in Fig. 1, a regularized (bordered) matrix provides
an alternative way to construct the free–free flexibility matrix.

The linear algebraic system is

Table 1
Relation between mathematics and structural mechanics.

Mathematics Structural mechanics

Null space Spurious mode
Rigid body mode

Rank deficiency Free–free structure
Bordered matrix Adding an extra degree of freedom
Generalized inverse Free–free flexibility matrix
Moore–Penrose Free–free stiffness matrix
Influence matrix Stiffness or flexibility matrix

Fig. 1. The self-regularized linear algebraic system from the continuous BIE system.
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