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a b s t r a c t

We present a Bayesian approach for analyzing aggregate level sales data in a market with differentiated
products. We consider the aggregate share model proposed by Berry et al. [Berry, Steven, Levinsohn,
James, Pakes, Ariel, 1995. Automobile prices inmarket equilibrium. Econometrica. 63 (4), 841–890],which
introduces a common demand shock into an aggregated random coefficient logit model. A full likelihood
approach is possiblewith a specification of the distribution of the common demand shock.We introduce a
reparameterization of the covariance matrix to improve the performance of the randomwalk Metropolis
for covariance parameters. We illustrate the usefulness of our approach with both actual and simulated
data. Sampling experiments show that our approach performs well relative to the GMM estimator even
in the presence of a mis-specified shock distribution. We view our approach as useful for those who are
willing to trade off one additional distributional assumption for increased efficiency in estimation.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Empirical researchers often build demand models using aggre-
gate level sales data since individual level data are not always avail-
able. Berry et al. (1995) (hereafter BLP) introduced a particularly
appealing formulation in which a common demand shock is intro-
duced into a random coefficient logit model to provide a coherent
aggregate demand specification. This aggregate sharemodel uses a
logit specification at the individual level coupledwith a normal dis-
tribution of parameters over individuals. A large and growing body
of research employs the generalized method of moments (GMM)
technique due to Berry (1994) to estimate suchmodels with aggre-
gate data (see, for example, Chintagunta et al. (2003), Davis (2006),
Goldfarb et al. (2005), Nevo (2000, 2001), Sudhir (2001) and Villas-
Boas (2004)).
GMM estimators do not require distributional assumptions

regarding the common demand shock. Our approach is to make
one further distributional assumption concerning the common
demand shock and derive the likelihood. Our model uses a
normal distribution for the common demand shock. The resulting
likelihood for aggregate share data is not in any closed form and
may be quite irregular. Instead of relying on estimation procedures

∗ Corresponding address: University of Chicago, Graduate School of Business,
5807 S. Woodlawn Ave., 60637 Chicago, IL, United States. Tel.: +1 773 702 7513;
fax: +1 773 834 2081.
E-mail address: peter.rossi@chicagogsb.edu (P.E. Rossi).

that require maximization, we consider Bayesian Markov Chain
Monte Carlo (MCMC) methods that do not require a regular (or
even a smooth) criterion function.
We apply our new Bayesian approach to both simulated and

actual datasets. Our approach is relatively insensitive to simulation
error in the estimates of integral terms in the density and Jacobian.
This stands in marked contrast to the GMM approach. We conduct
sampling experiments in which our Bayes estimator is shown to
have lower mean squared error (MSE) than the GMM estimator.
The GMM method is based on a model with a tightly specified
logit demand at the individual level and a normal distribution of
heterogeneity but without distributional assumptions regarding
the common demand shock. One might argue that the improved
performance of the Bayes estimator is due to the fact that an
additional distribution assumption is used in formulating the
likelihood function. Simulations with different shock distributions
and violations of the i.i.d. assumption show that the Bayes
estimator still performs well relative to the GMM estimator. This
suggests that the reason for the improved sampling performance
of the Bayes estimator is that it makes more efficient use of the
data.
An additional benefit of the Bayesian approach is the ability to

conduct inference for model parameters and functions of model
parameters. A natural by-product of our MCMC simulation-based
method is a way of constructing posterior distributions for any
function of the model parameters. Indeed, it is possible to argue
that price elasticities are a much more natural summary of the
model parameters than the point estimates of utility weights and

0304-4076/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2008.12.010

http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
mailto:peter.rossi@chicagogsb.edu
http://dx.doi.org/10.1016/j.jeconom.2008.12.010


R. Jiang et al. / Journal of Econometrics 149 (2009) 136–148 137

the covariance matrix of the random coefficient distribution. In
contrast, the computation of asymptotic standard errors of the
nonlinear functions of parameter estimates is not a natural by-
product of the GMM inference procedure. For example, under the
GMM framework, some researchers have used bootstrap methods
to obtain standard errors of price elasticity, price–cost margin or
other various quantity of interest (Nevo, 2001; Goldfarb et al.,
2005). In the GMM framework, standard errors for these functions
of model parameters require supplemental computations outside
of the estimation algorithm. The Bayesian MCMC approach
delivers the necessary computations in one unified computational
framework.
We explore the adequacy of the asymptotic standard errors

obtained by the GMM procedure. We find that these asymptotic
standard errors understate the true sampling variance and result in
confidence intervals with coverage much lower than the nominal
level.
There is a literature on Bayesian approaches to estimation in

aggregate share models. The existing Bayesian approaches use
a data augmentation idea in which the parameters of ‘‘pseudo’’
consumers are added to the model. These pseudo consumer
parameters are not used to integrate over the random coefficient
distribution but are added to the set of parameters used in
inference. Obviously, these parameters are not of interest, in and
of themselves, but are merely a device to facilitate estimation. In
standard data augmentation applications, the posterior, with these
augmented parameters integrated out, is the same as the posterior
from the likelihood function without the parameters. In the
augmentation approaches for aggregate share models, this is not
true. That is, the model specifies an infinite number of consumers
and, thus, the existing data augmentation approaches can only
approximate the correct likelihood-based inference. Moreover,
this approach is limited to, at most, several hundred ‘‘pseudo’’
consumers in augmentation.
Chen and Yang (2007) propose a model without the common

demand shock. Musalem et al. (in press) consider a model with an
aggregate demand shock and an improved algorithm that uses the
augmentation idea.Musalem et al. state that theirmethod is a valid
approximation method; that is, they show that, as the number of
pseudo household ‘‘augmented’’ parameters goes to infinity, they
can approximate the posterior of the model with a continuum
of consumers. However, in practice, a finite and relatively small
number of augmented parameters must be used. A simulation
studywould be required to ascertain the approximation properties
of their approach.
Romeo (2007) is best viewed as a hybrid approach. He

exponentiates theGMMcriterion in the spirit of Chernozhukov and
Hong (2005). Gallant and Hong (2007) argue that Romeo’s pseudo-
likelihood can be regarded as a likelihood. However, themain point
is that the efficiencyproperties of this approach are likely to be very
similar to the GMMestimator as the Romeo-style ‘‘likelihood’’ uses
the same GMM criterion as studied here. The principal advantage
of Romeo’s approach is the use of a prior and the ability to simulate
distributions of arbitrary functions of the model parameters (such
as elasticities).
The remainder of the paper is organized as follows. Section 2

presents the main model. Section 3 outlines the MCMC algorithm.
Section 4 discusses the computation of elasticities. We briefly
review the GMM estimation procedure in Section 5. Section 6
conducts sampling experiments and also evaluates the adequacy of
the asymptotic GMM standard errors. In Section 7, we provide an
empirical example in which there is a material difference between
the results obtained via the GMM and our Bayes procedure. We
consider the extension to instrumental variables in Section 8 and
conclude in Section 9.

2. Model

We assume that the latent indirect utility that a consumer i
derives from consuming product j at time t takes the following
standard form:

Uijt = f
(
Xjt
∣∣θ i )+ ηjt + εijt = Xjtθ i + ηjt + εijt (1)

where Xjt is a 1 by K vector that includes all the observed product
attributes (e.g., brand intercepts and price Pjt ). ηjt is the aggregate
demand shock common across consumers/households (some
interpret this as a time-varying unobserved product attribute).
εijt is an idiosyncratic shock that is distributed i.i.d. as a type I
Extreme Value (0, 1). There are J products and an outside good,
i.e., at any time t , a household has the option of not buying any
of the J products. As is standard in the literature, we characterize
the distribution of household preferences via a normal distribution,
θ i ∼ N

(
θ,Σ

)
.

The predicted share is then obtained by integrating sijt over the
distribution of θ i,

sjt =
∫
sijtφ

(
θ i|θ̄ ,Σ

)
dθ i

=

∫
exp

(
Xjtθ i + ηjt

)
1+

J∑
k=1
exp

(
Xktθ i + ηkt

)φ (θ i|θ̄ ,Σ) dθ i (2)

where φ denotes the multivariate normal density. We can also
write expected or predicted shares in terms of ‘‘mean utility’’ by
using the identity θ i = θ̄ + vi vi ∼ N (0,Σ).

sjt =
∫

exp
(
µjt + Xjtvi

)
1+

J∑
k=1
exp (µkt + Xktvi)

φ (vi|0,Σ) dv

where µjt = Xjt θ̄ + ηjt . (2) shows that, at any time t , given the
distribution of θ i and observed covariates Xt =

(
X ′1t , . . . , X

′

Jt

)′,
share st = (s1t , . . . , sJt)′ is only a function of the aggregate demand
shock ηt = (η1t , . . . , ηJt)

′. That is, aggregate shares inherit
randomness solely from the aggregate demand shocks. We can
therefore write the density of shares as a function of the density of
the aggregate demand shocks.Wedenote the relationship between
sjt and ηt by h (·) as follows:

sjt = h
(
ηt |Xt , θ,Σ

)
. (3)

The model so far is identical to that in BLP. We add one
additional assumption necessary to specify the likelihood. We
assume that the common demand shocks are independently
distributed across all products with identical variances, i.e. ηjt ∼
N
(
0, τ 2

)
. The joint density of shares at time t can be obtainedusing

the Change-of-Variable Theorem as follows:

π
(
s1t , . . . , sJt

∣∣Xt , θ,Σ, τ 2 )
= φ

(
h−1

(
s1t , . . . , sJt

∣∣Xt , θ,Σ ) ∣∣τ 2 ) J(ηt→st )
= φ

(
h−1

(
s1t , . . . , sJt

∣∣Xt , θ,Σ ) ∣∣τ 2 ) (J(st→ηt ))−1 . (4)

The likelihood is given by

L
(
θ,Σ, τ 2

)
=

T∏
t=1

π
(
st
∣∣Xt , θ,Σ, τ 2 ) . (5)

To evaluate the likelihood, we need to invert the h function in (3)
and evaluate the Jacobian (J) in (4).
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