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a b s t r a c t

The residue theorem is employed in the design optimization of the frequency averaged power injected
into a linear second-order system. The dynamic behavior of a vibrating structure is obtained with the
finite element method and the frequency averaged input power into the structure is adopted as an
objective function. The design sensitivity with respect to each structural element is computed by the
adjoint variable method with consideration for the residue theorem. The proposed method highly
enhances the computational efficiency of the optimization and the design of the optimization leads to
substantial reduction of the radiated sound power from the structure.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Computer aided engineering (CAE) is widely used in the design
optimization of vibro-acoustic models. Commonly, a physical
quantity, such as sound pressure level [1–6] or sound power
[7–12], at a certain frequency is used as an objective function.
However, the eventual design realization always exhibits slightly
different resonances than the nominal model. Hence, design engi-
neers prefer to consider a certain frequency band rather than a sin-
gle frequency to obtain a more robust design. Numerical
quadrature rules, such as a rectangular rule and a trapezoidal rule,
are commonly used for the evaluation of the frequency average
over a band. Their computational process is straightforward
regardless of the complexity of the objective function. However,
a large number of function evaluations at individual frequencies
are required to get the accurate average value within the band,
and the computational cost of such a strategy increases as the
bandwidth becomes larger. Furthermore, the frequency resolution
should be high enough in order to capture the oscillatory behavior
of a complex response function. When it comes to the design opti-
mization, this process is performed for every design update,
thereby resulting in an expensive computational cost to reach an

optimum point. To avoid such a cumbersome process, the strategy
proposed in recent works by the authors [13,14] using the residue
theorem is applied here. They introduce weighting functions in
order to filter a certain frequency band and evaluate the system
response at a few complex frequencies rather than integrating over
real frequencies. Therefore, the strategy allows an efficient process
for wide band optimum design of vibro-acoustic problems with a
consequent reduction of the computation time in the objective
function evaluation.

In vibro-acoustic problems, the vibrating structure is the source
of radiated sound. For the reduction of vibration on the time-
harmonic oscillated structure, input power called as dynamic com-
pliance has been widely used as an objective function in the design
optimization [15–19]. The input power minimization maximizes
the input impedance at the excitation point so that the global
vibration of the structure is reduced. The radiated sound does
not scale proportionally with input power given by the different
radiation efficiency of various structural modes; however, mini-
mizing the input power indirectly leads to a substantial reduction
of the radiated sound power [19]. Since general mechanical struc-
tures are much stiffer than air, the vibration of the structure is
assumed not to be affected by the fluid. Therefore the sound power
level reduction can be achieved by simply considering the struc-
tural dynamic behavior in the optimization process. The input
power does not require an acoustic modeling and complex design
sensitivity formulations such like used in sound power design
optimization, thereby leading to a simpler and more efficient
optimization process.
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In this paper, the frequency averaged input power into a hollow
cube built of plates is computed by using the residue theorem, and
the residue formulation is applied in the optimization process to
reduce the radiated sound power of the vibrating cube at the consid-
ered frequency band. This novel approach applying the residue
scheme in the optimization strategy has never been used. The
computational efficiency is highly increased compared to the
conventional vibro-acoustic design optimization on a wide band
frequency response and the design sensitivity is derived quite
straightforwardly so that it can be easily applied to most of the
design parameters in the vibro-acoustic problem. The finite element
method (FEM) [20,21] is used to investigate the dynamic behavior of
a vibrating cube, and the thickness of a group of shell elements is
considered as a sizing design variable. For the evaluation of the
design sensitivity, the adjoint variable method (AVM) [22] is used
due to its computational efficiency. Through the combination of
the residue theorem and the adjoint design sensitivity, the compu-
tational efficiency is highly increased in the optimization of a wide
band frequency average of a vibrating structure comprising large
number of design variables. Different types of weighting functions
for the frequency averaged input power are considered as objective
functions and their results are compared with each other. To validate
the noise reduction from the minimum input power model, radiated
sound powers of the optimum designs are computed using the wave
based method (WBM) [23–25]. The results show that the proposed
approach can be a good solution to reduce the radiated sound from
vibrating structures over frequency bands.

2. Structural FEM

The design sensitivity is defined by the design derivative of a
governing equation. It is essential to understand the governing
equation and the numerical prediction scheme to derive the design
sensitivity formulation, because the variational equation used in the
numerical modeling stage is reused in the design sensitivity formu-
lation. This section presents a brief introduction to the variational
formulation and its FEM discretization for a generic structural
dynamic problem. The variational equation for a structural dynamic
model under the time-harmonic excitation can be obtained as [22]

�x2dðz; �zÞ þ jxcðz; �zÞ þ aðz; �zÞ ¼ ‘ð�zÞ; 8�z 2 Z; ð1Þ

where x is the angular frequency, �z is the virtual displacement, and
Z is the complex space of the kinematically admissible virtual dis-
placements. Each variational term in Eq. (1) is defined as follows
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where dðz; �zÞ is the kinetic sesqui-linear form, cðz; �zÞ is the damping
sesqui-linear form, aðz; �zÞ is the structural sesqui-linear form, ‘ð�zÞ is
the load semi-linear form, XS is the domain of the structure, qs and
C are the structural mass density and viscous damping, �z� is the
complex conjugate of �z, and e and r are the strain and stress tensor,
respectively. The structural-state variable z of the shell component
is defined by

z ¼ ½z1; z2; z3; h1; h2�T: ð6Þ

Fig. 1 shows a rectangular shell description with the component
of the state variable in Eq. (6). The strain e for a thin plate shell
element is decomposed into its membrane and bending parts, as
shown in Eqs. (7) and (8), respectively,
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where h1,1 and h2,2 are the bending curvatures in the x1 and x2 direc-
tion, respectively, and h1,2 + h2,1 is the twisting curvature [2]. By
using Eqs. (7) and (8), the kinetic and the structural sesqui-linear
form for the thin plate shell element can be expressed by consider-
ing its thickness h as
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and the strain–stress matrix under the assumption of plane stress is
defined as

C ¼ E
1� m2

1 m 0
m 1 0
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A damping loss factor of many mechanisms remains constant
within certain frequency ranges and mainly influences the fre-
quency response function in correspondence of its natural frequen-
cies when the damping is low [26]. Therefore the viscous damped
dynamic model can be substituted by using the linear hysteretic
damping, called as structural damping, with the use of the loss
factor.

To make the computation of the input power straightforward,
the state variable in the variational Eq. (1) can be conveniently
changed into velocity using the relationship v(x) = jxz(x). By tak-
ing the structural damping effect into account in the variational
equation for the structural dynamic system, Eq. (1) can be repre-
sented as

jxdðv; �zÞ þ jaðv; �zÞ ¼ ‘ð�zÞ; ð12Þ

where j = (1 + ju)/jx and u is the loss factor. After discretization of
the variational equation using FEM and a reduction of the global
matrices using kinematic boundary conditions, the variational form
of Eq. (12) can be approximated as [20, 21]

½jxMþ jK�fvg ¼ ffg; ð13Þ

where M and K are the global inertia and stiffness matrix,
respectively.

3. Frequency averaged input power

The input power of a harmonically excited structural model is
defined as

PinðxÞ ¼
1
2
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Fig. 1. Description of the state variable on the rectangular shell element with
thickness h.
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