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a b s t r a c t

We present in this paper the development and use of a novel and promising numerical scheme, the
method of finite spheres, for the analysis of wave propagations. The solution of two-dimensional linear
elastic and visco-elastic waves is considered. The procedure does not require a mesh and hence avoids
element distortions. We discuss the construction of the interpolations in which harmonic functions are
included to make the method effective for the analysis of wave propagations. A simple and efficient
numerical integration scheme is proposed and the solution effort is evaluated versus using the standard
finite element method. Several numerical examples are used to demonstrate capabilities of the method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The objective in the development of the method of finite
spheres is to obtain a reliable and efficient method to solve com-
plex boundary value problems without the construction of a mesh
[1–6]. The method was developed during a period of increasing
awareness and promise of meshless methods with the aim to over-
come some inherent limitations of numerical methods that rely on
the use of a mesh [7]. The finite element method requires the dis-
cretization of a problem domain into a set of non-overlapping ele-
ments. The consequence of a poorly constructed discretization can
be a significant loss in accuracy of the solution [8]. In addition, for
wave propagation problems, the standard finite element method
may not be effective since very fine meshes are required and even
when using such fine meshes the solution may still show signifi-
cant spurious oscillations, and dispersion and dissipation errors.
The enriched finite element method using an implicit time integra-
tion scheme was developed to address these difficulties [9–11].
However, measured on the experiences obtained, there is still
significant need for improved solution procedures.

Several other methods have been proposed for the solution of
wave propagation problems [12–32]. The spectral element method
is a high-order Lagrangian-based finite element technique that
combines the approach of using finite elements with the accuracy
of spectral methods. Lagrange polynomials approximate the field
variables and Gauss–Lobatto quadrature is used for the required
integrations leading to a diagonal mass matrix when using

quadrilateral or hexahedral elements in two- and three-
dimensional solutions, respectively, which is advantageous for
the analysis of transient wave propagation problems [13–15].
The major difficulty, however, is to mesh complex two- and
three-dimensional domains and obtain effective solutions using a
mixture of elements.

Meshless methods have attracted significant attention for the
analyst to solve boundary value problems without the use of a pre-
defined mesh. Some meshless procedures have also been devel-
oped for the solution of wave propagation problems and can
generally be categorized into strong-form and weak-form meth-
ods. Smoothed particle hydrodynamics (SPH) is a well-known
strong-form method, initially used for modeling astrophysical phe-
nomena [16,17]. Weak-form methods include the element-free
Galerkin method (EFG) [18,19], the meshless local Petrov–Galerkin
method (MLPG) [20–23], and the method of finite spheres (MFS)
[1]. Meshless methods can also be categorized by their choice of
interpolation functions. For example, methods employing radial
basis functions (RBF) have been developed for the solution of tran-
sient acoustic wave propagation problems [24–26].

The SPH scheme is a commonly used method for simulating flu-
ids. The method represents the field quantity in an integral form
based on kernel approximation functions. Current research has
also illustrated the applicability of SPH for the solution of wave
propagation problems in solid mechanics. The major difficulties
commonly cited for SPH are tensile instability and boundary
deficiency [16,17]. Tensile instability refers to an unstable solution
when tensile stresses are present. Boundary deficiency is a conse-
quence of not satisfying zeroth-order consistency near or on the
boundary of the problem domain. Improvements addressing these
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difficulties have been developed and the improved schemes were
shown to provide good accuracy for the solution of shock wave
propagations in viscoplastic media [17]. However, the SPH scheme
still requires the use of a large number of nodes to obtain reason-
ably accurate solutions and the use of some ‘adjustable solution
factors’ that render the method not applicable, for example, to
the solution of simple linear elastic static problems.

The element-free Galerkin method has been shown to provide
good results for acoustic and elastic wave propagation problems
[19]. Imposing the Dirichlet boundary conditions, however, is not
straightforward since the interpolation functions do not satisfy
the Kronecker delta property. Lagrange multipliers can be used,
but this leads to a larger system of algebraic equations and a loss
of positive definiteness which reduces the computational
efficiency. Alternatively, the penalty method can be employed,
but then appropriate penalty factors need to be chosen, that may
depend on the problem considered [18,19].

The meshless local Petrov–Galerkin method adopts trial and
test functions from different approximation spaces, resulting in
various formulations [20–23]. The MLPG approach has been used
to solve for the propagation and scattering of electromagnetic
waves, where the trial functions are constructed from moving least
squares approximations and the test functions from solutions of
Green’s problem [22]. The method has also been used for the solu-
tion of wave propagations in three-dimensional poroelastic solids,
with the trial functions constructed using radial basis functions
and the test functions being simply unit step functions [23]. While
the given numerical solutions are in good agreement with
analytical solutions, these methods are computationally expensive
due to the non-symmetry of the coefficient matrices and the numer-
ical integration of complex expressions within the subdomains.

The method of finite spheres is related to the above techniques
in that it is based on a weak formulation of boundary value
problems using overlapping subdomains, and hence also does not
require a mesh. In fact, the only difference to the standard finite
element method is that the spheres (subdomains, or elements)
overlap, and indeed other subdomains (like bricks) could be
employed. The method is using symmetric coefficient matrices
and was initially presented for the analysis of linear static solids
and fluids [1]. Further research focused on the method of finite
spheres in a mixed formulation, improved numerical integration,
automatic discretization, coupling with the finite element method,
and enrichment strategies [2–6]. In this paper, we seek to demon-
strate that there is significant promise of reliability and efficiency
for the method of finite spheres in the solution of wave propaga-
tion problems.

We briefly review the method of finite spheres in Section 2. We
give the interpolation functions used for general elliptic problems
and introduce the special interpolation functions used for wave
propagation problems. In Section 3, the formulation for the
analysis of two-dimensional linear elastic wave propagation prob-
lems is presented. Since efficiency is a particular concern for the
use of the method of finite spheres, a simple improved numerical
integration scheme is given in Section 4. Finally, to illustrate
the capabilities of the developed scheme, we present in Section 5
the results of several wave propagation problems in elastic and
visco-elastic media.

Since we consider in this paper only the solution of two-
dimensional problems, we should note that when referring to a
‘‘sphere’’, a ‘‘disk’’ is implied.

2. Interpolation scheme

The method of finite spheres uses the Shepard partition of unity
functions. The interpolations are defined by the Shepard functions
times local basis functions that can include any desired

enrichments [1]. Consistency and continuity conditions are satis-
fied by proper selection of the local basis functions that together
span the local approximation space. Computational efficiency
depends on the suitability of these functions when considering
the degree of the governing partial differential equations and the
nature of the solutions to be predicted.

2.1. Shepard partition of unity functions

Let V 2 Rd(d = 1, 2, or 3) be an open bounded domain and let S be
the domain boundary, with S = Su [ Sf and Su \ Sf = 0, where Su is
the Dirichlet boundary and Sf is the Neumann boundary. Then let
{B(xI, rI); I = 1, 2, . . ., N} be a set of spheres which form a covering
for V, i.e., V �

SN
I¼1BðxI; rIÞ, where xI and rI refer to the center and

radius of the sphere BI, respectively, and where I is the nodal label
of each sphere and N is the total number of spheres. The unit
normal to the domain boundary, n, is positive in the outward
direction. As illustrated in Fig. 1, spheres are either interior
spheres, entirely within the problem domain, or boundary spheres
intercepting the domain boundary.

Let WI(x) denote a positive radial weighting function of the form
WI(x) = W(sI), with sI = ||x � xI||/rI where ||�|| is the Euclidean norm.
We use the quartic spline weighting function defined as

WðsIÞ ¼
1� 6s2

I þ 8s3
I � 3s4

I ; 0 6 sI 6 1
0; sI > 1

(
ð1Þ

The Shepard partition of unity function is then given by

u0
I ðxÞ ¼

WIPN
J¼1WJ

; I ¼ 1;2; . . . ;N ð2Þ

Hence
PN

I¼1u0
I ðxÞ ¼ 1 8x 2 V . These functions are rational, non-

polynomial functions satisfying zeroth order consistency, ensuring
that rigid body modes can be reproduced exactly.

To generate approximation spaces of higher order consistency, a
local approximation space Vh

I ¼ spanm2J fpmðxÞg is defined at each
node I, where h is a measure of the sphere size, J is an index set,
and pm(x) is a member of the local basis. Then the global approxi-
mation space Vh is defined as the product of the Shepard function
at each node I and the functions from the local bases

Vh ¼
XN

I¼1

u0
I Vh

I ð3Þ

Hence any function vh in the solution space Vh can be written as

vhðxÞ ¼
XN

I¼1

X
m2J

hImðxÞaIm ð4Þ
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Fig. 1. General problem domain V with domain boundary S = Su [ Sf.
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