
Journal of Econometrics 149 (2009) 65–81

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Parameter estimation and bias correction for diffusion processes
Cheng Yong Tang a, Song Xi Chen b,c,∗
a Department of Statistics and Applied Probability, Risk Management Institute, National University of Singapore, Singapore, 117546, Singapore
b Department of Statistics, Iowa State University, Ames, IA 50011-1210, United States
c Department of Business Statistics and Econometrics, Guanghua School of Management, Peking University, Beijing 100871, China

a r t i c l e i n f o

Article history:
Received 31 March 2007
Received in revised form
3 October 2008
Accepted 15 November 2008
Available online 25 November 2008

JEL classification:
C13

Keywords:
Bias correction
Bootstrap
Continuous-time models
Diffusion processes
Jackknife
Parameter estimation

a b s t r a c t

This paper considers parameter estimation for continuous-time diffusion processes which are commonly
used to model dynamics of financial securities including interest rates. To understand why the drift
parameters are more difficult to estimate than the diffusion parameter, as observed in previous studies,
we first develop expansions for the bias and variance of parameter estimators for two of the most
employed interest rate processes, Vasicek and CIR processes. Then, we study the first order approximate
maximum likelihood estimator for linear drift processes. A parametric bootstrap procedure is proposed
to correct bias for general diffusion processes with a theoretical justification. Simulation studies confirm
the theoretical findings and show that the bootstrap proposal can effectively reduce both the bias and the
mean square error of parameter estimates, for both univariate andmultivariate processes. The advantages
of using more accurate parameter estimators when calculating various option prices in finance are
demonstrated by an empirical study.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion processes have been commonly used in finance to
model stochastic dynamics of financial securities following the
works of Black and Scholes (1973) andMerton (1973)which estab-
lished the foundation of option pricing theory in finance. There has
been phenomenal growth in financial products and instruments
powered by these processes, as documented in Sundaresan (2000).
A d-dimensional parametric diffusion process {Xt ∈ Rd; t ≥ 0} is
defined by the following stochastic differential equation

dXt = µ(Xt; θ)dt + σ(Xt; θ)dBt , (1.1)

where θ is a q-dimensional parameter, µ(·; θ) : Rd
→ Rd and

σ(·; θ) = (σij)d×p > 0 : Rd
→ Rd×p are drift and diffusion func-

tions representing, respectively, the conditionalmean andvariance
of the infinitesimal change of Xt at time t , and Bt is a p-dimensional
Brownian motion. The existence and uniqueness of the process
{Xt; t ≥ 0} satisfying (1.1) and its probability properties are given
in Stroock and Varadhan (1979).
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A unique feature of statistical inference for diffusion processes
is that, despite these processes being continuous-time stochastic
models, their observations are made only at discrete time points,
say at n equally spaced {tδ}nt=0. Here δ is the sampling interval and
can be either fixed or very small corresponding to high-frequency
data. See Lo (1988), Bibby and Sørensen (1995), Aït-Sahalia (2002),
Aït-Sahalia andMykland (2003), and Fan (2005) for discussions and
overviews for estimation of diffusion processes, based on discrete
observations.
Short-term interest rates are fundamental quantities in finance,

as they define excess asset returns and risk premiums of other
assets and their derivative prices. A family of diffusion processes
for the interest rates dynamics, consists of the following linear drift
processes

dXt = κ(α − Xt)dt + σ(Xt , ψ)dBt , (1.2)

where α, κ and ψ are unknown parameters. The linear drift
prescribes a mean-reversion of Xt toward the long term mean α
at a speed κ . The diffusion function σ(Xt , ψ) can accommodate
a range of pattens in volatility. A sub-family of the above linear
drift processes is given by assigning σ(Xt , ψ) = σXρt with ψ =
(σ 2, ρ). Important members of this sub-family are the Vasicek
model (Vasicek, 1977) with ρ = 0 and the CIR model (Cox
et al., 1985) with ρ = 1/2. Both Vasicek and CIR models are
commonly used in finance due to (i) both having simple and
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attractive financial interpretations; and (ii) both admitting close-
form solutions. The latter facilitates explicit calculations of various
option prices.
Despite the critical roles played by these interest rate processes,

it is well known, empirically, that estimation of the drift
parameters κ and α can incur large bias and/or variability;
see for instance Ball and Torous (1996) and Yu and Phillips
(2001).Merton (1980) had earlier discovered the difficultywith the
drift parameter estimation for the Black–Scholes diffusion model,
where both the drift and diffusion functions are constant functions.
The difficulty with the drift parameter estimation is encountered
by virtually all the estimation approaches, including themaximum
likelihood estimation. The problem increaseswhen the process has
a lack of dynamics, which happens when κ is small. Indeed, as
reported in Phillips and Yu (2005) and our simulation study, the
maximum likelihood estimator for κ can incur relative bias ofmore
than 200% even the processes are observed monthly for more than
10 years. This is serious, as poor qualitative estimates can produce
severely biased option prices.
The objectives of this paper are (i) to understand the above

empirical phenomena by developing expansions to the bias and
variance of estimators for the Vasicek, CIR and general linear drift
diffusion processes; and (ii) to propose a bias correction approach
that is applicable to general diffusion processes. Two asymptotic
regimes are considered in our analysis. One has δ (the sampling
interval) fixed while the sample size n → ∞. The other has δ
converges to zero as n → ∞. The latter corresponds to high
frequency data, and allows simplification of results as compared
to results for the fixed-δ case.
The bias and variance expansions reveal that regardless of

whether δ is fixed or diminishing to zero, the bias of the
κ estimators and the variances of the two drift parameters
estimators are effectively at the order of (nδ)−1, depending on the
amount of time over which the process is observed. Our analysis
also reveals that the bias and variance of the estimators for the
diffusion parameter σ 2 basically enjoys much smaller orders at
n−1. These explain why estimation of κ incurs more bias than the
other parameters, andwhy the drift parameter (κ and α) estimates
are more variable than those of the diffusion parameter.
We then propose a parametric bootstrap procedure for

bias correction for general diffusion processes. Both theoretical
and empirical analysis show that the proposed bias correction
effectively reduces the bias without inflating the variance. The
proposed bootstrap procedure can be combined with a range
of parameter estimators, including the approximate likelihood
estimation of Aït-Sahalia (2002, 2008).
The paper is structured as follows. Section 2 outlines parameter

estimators used in our analysis. Bias and variance expansions for
the estimators of Vasicek, CIR and the linear drift processes are
presented in Section 3. Section 4 discusses the bootstrap bias
correction. Simulation results are reported in Section 5. Section 6
analyzes a dataset of Fed fund rates. All technical details are
deferred to the Appendix.

2. Parameter estimation for diffusion processes

2.1. A general overview

Let X0, Xδ, . . . , Xnδ be discrete observations from process (1.1)
at equally spaced time points {tδ}nt=0 over a time interval [0, T ]
where T = nδ. To simplify notation,wewrite these observations as
{Xt}nt=0 by hiding δ whenever doing so does not lead to confusion.
As a diffusion process is Markovian, the maximum likelihood
estimation (MLE) is the natural choice for parameter estimation
if its transitional density is known. However, for most diffusion
processes, their transitional distributions are not explicitly known,

which prevents the use of theMLE. In these cases, several methods
are available, which include the martingale estimating equation
approach of Bibby and Sørensen (1995); the pseudo-Gaussian
likelihood approach of Nowman (1997); the Generalized Method
of Moments (GMM) estimator of Hansen and Scheinkman (1995);
the Efficient Method of Moments of Gallant and Tauchen (1996)
and the approximate likelihood approach of Aït-Sahalia (2002).
Aït-Sahalia and Mykland (2003, 2004) consider likelihood and
the GMM based estimation when δ is random. Nonparametric
estimators for the drift and diffusion functions have been also
proposed; see Fan (2005) for reviews.
We carry out our analysis under two asymptotic regimes. It

is assumed, in the first regime, that n → ∞ while δ is a fixed
constant; and in the second regime that

n→∞, δ→ 0, T = nδ→∞

and for some k > 2 Tδ1/k →∞. (2.1)

In the second regime, δ diminishes to zero while the total
observational time goes to infinity as n→∞. The last part of (2.1)
is used to bound remainder terms inmoment expansions.We note
that T → ∞ mimics the standard asymptotic of n → ∞ and, as
shown in our analysis, is the main driving force in determining the
bias and variance properties in the drift parameter estimation.
The motivations for assuming δ → 0 besides n → ∞

are two-fold. One is that high frequency financial data are
increasingly available. Another is to accommodate discretization
based estimators, which normally requires δ → 0 to make
the discretization error diminish to zero fast enough so that the
estimators are consistent.

2.2. Estimation for Vasicek process

The Vasicek process satisfies the univariate stochastic differen-
tial equation

dXt = κ(α − Xt)dt + σdBt . (2.2)

It is the Ornstein–Uhlenbeck process and was proposed by Vasicek
(1977) for interest rate dynamics. The conditional distribution of
Xt given Xt−1 is

Xt |Xt−1 ∼ N
{
Xt−1e−κδ + α(1− e−κδ),

1
2
σ 2κ−1(1− e−2κδ)

}
and the stationary distribution is N(α, 12σ

2κ−1). The conditional
mean and variance of Xt given Xt−1 are

E (Xt |Xt−1) = Xt−1e−κδ + α(1− e−κδ) =: µ(Xt−1) and (2.3)

Var(Xt |Xt−1) =
1
2
σ 2κ−1(1− e−2κδ). (2.4)

Let φ(x) be the density function of the standard normal
distribution N(0, 1). Then, the likelihood function of θ =

(κ, α, σ 2) is

L(θ) = φ
(
σ−1
√
2κ(X0 − α)

)
×

n∏
t=1

φ
(
σ−1

√
2κ(1− e−2κδ)−1{Xt − µ(Xt−1)}

)
.

Ignoring the first component in L(θ) involving X0, the maximum
likelihood estimators (MLE) can be obtained explicitly by

κ̂ = −δ−1 log(β̂1), α̂ = β̂2 and σ̂ 2 = 2κ̂ β̂3(1− β̂21 )
−1 (2.5)
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