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a b s t r a c t

When nonlinear behaviors of soil are important in a soil–structure interaction system, radiation of energy
into the infinity of the soil as well as the nonlinearity must be considered rigorously. In this study, per-
fectly matched discrete layers (PMDLs) are employed to represent the radiation of energy rigorously. A
time-domain formulation for a soil–structure interaction is given using the layers. To represent a layered
half-space effectively and accurately, a method to determine PMDL parameters for the half-space is
proposed. It is demonstrated that the proposed PMDL system can be applied successfully to problems
of nonlinear soil–structure interaction.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Wave propagation is a research topic with many applications in
a variety of areas including seismology, meteorology, oceanogra-
phy, mechanical engineering, civil engineering, and naval engi-
neering. Typical examples are subsurface imaging, weather
prediction at local and global levels, non-destructive testing,
dynamic fluid–structure interaction, dynamic soil–structure inter-
action, and underwater acoustics. Among these applications, the
dynamic soil–structure interaction is one of the most complex
physical phenomena because structural vibration and elastic wave
propagation in soil are deeply involved. Therefore, many research-
ers have studied this phenomenon and developed various
approaches to understand the physics that underlies it.

A typical soil–structure interaction system is shown in Fig. 1a.
The structure is placed on or embedded in a layered half-space
or layered soil on a rigid bedrock. As sketched in Fig. 1a, the soil
can be divided into two regions, i.e., near- and far-field regions.
Although a near-field region can have an irregular geometry and
be inhomogeneous in elastic properties, a far-field region is
assumed to be regular in geometry and has homogeneous elastic
properties in the direction of infinity. Conventional finite elements

are usually employed for an irregular and inhomogeneous near-
field region. On the other hand, a regular and homogeneous far-
field region must be represented by mathematical or numerical
models that can radiate elastic waves into infinity. Consistent
transmitting boundaries [1], boundary element methods [2,3], infi-
nite elements [4], non-reflecting boundary conditions [5], and per-
fectly matched layers (PMLs) [6,7] are frequently-used models for
an infinite far-field region.

When strong external forces are applied to the soil–structure
interaction system, two kinds of nonlinear behaviors are expected
in the system. The first one is nonlinear material behaviors of the
structure and soil. The material nonlinearity can be represented
by nonlinear constitutive equations of the materials. The other
nonlinearity is associated with sliding and a partial uplift of the
foundation and separation of its wall from the soil [8]. Contact ele-
ments can be employed for the nonlinearities on an interface
between the foundation and soil. In the nonlinear soil–structure
interaction analysis, the radiation of elastic waves into infinity
must also be considered rigorously. Therefore, the soil is divided
into the near- and far-field regions in the same way as mentioned
above. Usually, nonlinear behaviors are confined within the near-
field region, and the far-field region is assumed to be linear. Since
the conventional finite elements for the near-field region can rep-
resent nonlinearities accurately, a rigorous model for the far-field
region that can represent the radiation effect is required for an
accurate nonlinear analysis.
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In this study, the far-field region of soil is represented by per-
fectly matched discrete layers (PMDLs), and the representation is
applied to a nonlinear analysis of soil–structure interaction. Gudd-
ati and Tassoulas [9] presented a new absorbing boundary condi-
tion based on a continued-fraction approximation for a scalar
wave equation. The new absorbing boundary condition is referred
to as a continued-fraction absorbing boundary condition (CFABC).
Guddati [10] developed arbitrary wide-angle wave equations
(AWWEs) applicable for general heterogeneous, anisotropic, por-
ous, and viscoelastic media, and showed that the AWWEs are
equivalent to the continued fraction approximation. Because the

CFABC is closely related to the complex coordinate stretching idea
of the PML and does not reflect waves from an exterior region even
after discretization [11], the CFABC is referred to as a PMDL. PMDLs
have been applied successfully to a variety of problems: scalar
wave propagation [11], dispersive acoustic wave propagation
[12], elastic wave propagation [13], statics [14], wave propagation
in anisotropic media [15,16], and wave propagation in a discretized
domain [17]. For practical applications, the PMDLs were employed
in a soil–structure interaction analysis [18]. As shown in previous
studies, PMDLs are easy to be implemented and effective in mod-
eling the wave propagation in various unbounded domains. There-
fore, nonlinear problems in the area of soil–structure interaction
are solved using the PMDLs in this study.

The outline of this paper is as follows. In Section 2, the dynamic
stiffness of PMDLs is given, and an equation of motion for a soil–
structure interaction system is formulated. To represent a layered
half-space effectively and accurately, a determination of the PMDL
parameters is suggested in Section 3. In Section 4, the proposed
PMDL system is applied to various nonlinear soil–structure inter-
action problems in a layered half-space. The paper is summarized
in Section 5.

2. Perfectly matched discrete layers for time-domain analysis

A time-domain formulation of PMDLs is given when they repre-
sent the far-field region of the soil. Usually, three kinds of PMDLs
are employed for a representation of the half-space (Fig. 1b). One
is a PMDL for the vertical edge, another is for the horizontal edge,
and the other is for the corner. In this study, the PMDLs will be
referred to as PMDLx, PMDLz, and PMDLxz because they represent
the far-field regions that are infinite in the x-direction, z-direction,
and both directions, respectively. It is assumed in this study that
the vertical and horizontal edges form a right angle. Therefore,
the PMDLs are rectangular in shape. The same approach can be
applied when the boundaries make any convex polygon and the
PMDLs in a parallelogram are employed [11]. The dynamic stiffness
of the rectangular PMDLs shown in Fig. 2 can be obtained [13]:
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Fig. 1. Soil–structure interaction system in a layered half-space.
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Fig. 2. Rectangular PMDL element.
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