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a b s t r a c t

A general method for estimating the bounds of the reliability of a system in which the input variables are
described by random sets (probability distributions, probability boxes, or possibility distributions), with
dependence modeling is proposed. The method is based on an analytical property of the so-called design
point vector; this property is exploited by constructing a nonlinear projection of Monte Carlo samples of
the input variables in a two-dimensional diagram from which the analyst can easily extract the relevant
samples for computing both the lower and upper bounds of the failure probability using random set the-
ory. The method, which is illustrated with some examples, represents a dramatic reduction in the number
of focal element evaluations performed when applying the Monte Carlo method to random set theory.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty analysis in engineering should ideally be a part of
routine design because the variables and supposedly constant
parameters are either random or known with imprecision. In some
cases the uncertainty can be very large, such as the case of natural
actions provoking disasters or modeling errors leading to techno-
logical catastrophes. In approaching the estimation of the risk of
a given engineering problem, use is traditionally made of cumula-
tive distributions functions (CDFs) defining the input variables and
then, by means of analytic or synthetic methods (i.e. Monte Carlo)
the probability of not exceeding undesirable thresholds, is com-
puted [1,2].

One of the main problems in applying the probabilistic
approach is that the CDFs of the input variables are usually known
with imprecision. This is normally due to the lack of sufficient data
for fitting the model to each input random variable. For this reason,
the parameters of the input distributions are commonly known up
to confidence intervals, and even these latter are not wholly cer-
tain. This hinders the application of the probability-based
approach in actual design practice [3]. Even if the information is
abundant, there remains the problem of the high sensitivity of
the usually small probabilities of failure to the parameters of the
distribution functions [4–6]. Such a sensitivity is due to the fact

that the estimation of a probability density function from empirical
data is an ill-posed problem [7,8]. This means that small changes in
the empirical sample affects the parameters defining the model
being fitted, with serious consequences in the tails, which are just
the most important zones of the distribution functions for probabi-
listic reliability methods [9–11].

These and other considerations have fostered the research on
alternative methods for incorporating uncertainty in the structural
analysis, such as fuzzy sets and related theories [12–16], anti-
optimization or convex-set modeling [5,10,17], interval analysis
[10,18–27], random sets [28–30], ellipsoid modeling [31,32] and
worst-case scenarios [33]. Also comparisons have been made
between probabilistic and the alternative methods [34–36] or their
combination has been explored [37–40].

Taking into account that the first- and second-order reliability
methods (FORM and SORM) can be very inaccurate in many cases
e.g. [2,41–46], the focus of present paper is the determination of
the reliability intervals under uncertain input variables by means
of Monte Carlo simulation. In this regard, attention is called to
[23] where an interval finite-element approach for linear structural
analysis and a Monte Carlo method for calculating intervals of the
failure probability is proposed and to [28,29] who developed an
even more general method of computing the bounds of the proba-
bility of failure under the general framework of random set theory
and that comprised uncertainty modeled in the form of probability
boxes, possibility distributions, CDFs, Dempster-Shafer structures
or intervals; in addition the method allows to model dependence
between the input variables.
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Present paper is aimed to the goal of facilitating the Monte
Carlo solution of the interval reliability computation, which is
much more computationally demanding than the conventional
computation of a single reliability value [23,28,29,47]. In particu-
lar, a method based on random set theory is proposed that allows
selecting all relevant samples for a Monte Carlo estimation of the
bounds of the failure probability from a large mass of input vari-
able realizations generated from the uncertain distributions.
Hence, the method avoids the large number of sample evaluations
with null contribution to the failure probability estimation, which
is the typical case in using plain Monte Carlo simulation.

The proposed approach is based on a property of FORM [48],
which consists in that the design point vector points to a direction
of steep evolution of the limit state function [49–51]. This property
also holds for functions arising from the perturbation represented
by the interval uncertainty in the distribution parameters. There-
fore, in spite of FORM’s inaccuracy in many reliability problems
[2,41,44,45], its design point vector emerges as a powerful cluster-
ing device, because of the way that the performance function
evolves in this direction. Then, such a property is exploited by con-
structing a nonlinear transformation of the reliability problem
from d dimensions to a bi-dimensional space of two independent
variables whose marginal and joint density functions are explicitly
derived. The main characteristic of this transformation is that it
makes evident the organizing property mentioned above in a bi-
dimensional representation of the entire set of random numbers,
allowing the selection of the relevant samples for interval or single
reliability computations on almost a blind basis. The proposed
approach is illustrated with detailed structural examples. The
paper ends with some conclusions and suggestions for future work.

2. A brief introduction to random sets

Random set theory is a mathematical tool, which can effectively
unify a wide range of theories for coping with aleatory and episte-
mic uncertainty. It is an extension of probability theory to set-
valued rather than point-valued maps. In the following paragraphs
a brief summary of some of the most important concepts on
random sets required in the ensuing discussion is presented.

2.1. Copulas

A copula is a d-dimensional CDF C : ½0;1�d ! ½0;1� such that each
of its marginal CDFs is uniform on the interval ½0;1�.

According to Sklar’s theorem (see Refs. [52,53]), copulas are
functions that relate a joint CDF with its marginals, carrying in this
way the dependence information in the joint CDF; Sklar’s theorem
states that a multivariate CDF FX1 ;X2 ;...;Xd

ðx1; . . . ; xdÞ ¼ P½X1

6 x1; . . . ;Xd 6 xd� of a random vector ðX1;X2; . . . ;XdÞwith marginals
FXi
ðxiÞ ¼ P½Xi 6 xi� can be written as FX1 ;X2 ;...;Xd

ðx1; . . . ; xdÞ
¼ C FX1 ðx1Þ; . . . ; FXd

ðxdÞ
� �

, where C is a copula. The copula C contains
all information on the dependence structure between the compo-
nents of ðX1;X2; . . . ;XdÞ whereas the marginal cumulative distribu-
tion functions FXi

contain all information on the marginal
distributions.

In the following we will denote as lC , the Lebesgue-Stieltjes
measure corresponding to the copula C (see [54] for details).

The reader is referred to [55] for the standard introduction to
copulas.

2.2. Definition of a random set

Let us consider a universal set X – ; and its power set PðXÞ, a
probability space ðX;rX; PXÞ and a measurable space ðF ;rF Þwhere
F #PðXÞ. In the same spirit as the definition of a random variable,

a random set (RS) C is a ðrX � rF Þ-measurable mapping
C : X! F ;a # CðaÞ. In other words, a random set is like a random
variable whose realization is a set in F , not a number; let us call
each of those sets c :¼ CðaÞ 2 F a focal element while F is a focal
set.

Similarly to the definition of a random variable, the random set
can be used to define a probability measure on ðF ;rF Þ given by
PC :¼ PX � C�1. In other words, an event R 2 rF has the probability

PCðRÞ ¼ PX a 2 X : CðaÞ 2 Rf g: ð1Þ

The random set C will be called henceforth also as ðF ; PCÞ.
Note that when every element of F is a singleton, then C

becomes a random variable X, and the focal set F is said to be spe-
cific; in other words, if F is a specific set then CðaÞ ¼ XðaÞ and the
probability of occurrence of the event F, is PXðFÞ :¼ ðPX � X�1Þ
ðFÞ ¼ PX a : XðaÞ 2 Ff g for every F 2 rX . In the case of random sets,
it is not possible to compute exactly PXðFÞ but its upper and lower
probability bounds. [56] defined those upper and lower probabili-
ties by,

LPðF ;PCÞðFÞ :¼ PX a : CðaÞ# F;CðaÞ – ;f g
¼ PC c : c # F; c – ;f g; ð2aÞ

UPðF ;PCÞðFÞ :¼ PX a : CðaÞ \ F – ;f g ¼ PC c : c \ F – ;f g; ð2bÞ

where

LPðF ;PCÞðFÞ 6 PXðFÞ 6 UPðF ;PCÞðFÞ: ð3Þ

Note that the equality in (3) holds when F is specific. The reader is
referred to Refs. [57,58] a complete survey on random sets.

2.3. Relationship between random sets and probability boxes, CDFs
and possibility distributions

Definition in Section 2.2 is very general; [28,59] showed that
making the particularizations X :¼ 0;1ð �d;rX :¼ 0;1ð �d \ Bd and
PC � lC for some copula that contains the dependence information
within the joint random set, and using intervals and d-dimensional
boxes as elements of F , it is enough to model possibility distribu-
tions, probability boxes, intervals, CDFs and Dempster-Shafer
structures or their joint combinations; these are some of the most
popular engineering representations of uncertainty. Let us denote
by PC � lC the fact that PC is the probability measure generated
by PX which is defined by the Lebesgue-Stieltjes measure
corresponding to the copula C, i.e. lC . In other words,
PCðCðGÞÞ ¼ lCðGÞ for G 2 rX; also B will stand for the Borel
r-algebra on R.

In the rest of this section, ðX;rX; PXÞ will stand for a probability
space with X :¼ ð0;1�;rX :¼ 0;1ð � \ B :¼ [h2B 0;1ð � \ hf g and PX will
be a probability measure corresponding to the CDF of a random
variable ~a uniformly distributed on 0;1ð �, i.e. F~aðaÞ :¼ PX½~a 6 a�
¼ a for a 2 0;1ð �; that is, PX is a Lebesgue measure on 0;1ð �.

Probability boxes, CDFs and possibility distributions can be
interpreted as random sets, as will be explained in the following:

2.3.1. Probability boxes
A probability box or p-box (see e.g. [60]) hF; Fi is a set of CDFs

F : FðxÞ 6 FðxÞ 6 FðxÞ; F is a CDF; x 2 R
� �

delimited by lower and
upper CDF bounds F and F : R! ½0;1�. It can be represented as
the random set C : X! F ;a # CðaÞ (i.e. ðF ; PCÞ) defined on R

where F is the class of focal elements
CðaÞ :¼ hF; Fið�1ÞðaÞ :¼ Fð�1ÞðaÞ; Fð�1ÞðaÞ

� �
for a 2 X with Fð�1ÞðaÞ

and Fð�1ÞðaÞ denoting the quasi-inverses of F and F (the quasi-
inverse of the CDF F is defined by Fð�1ÞðaÞ :¼ inf x : FðxÞP af g)
and PC is specified by (1). This is a good point to mention that

D.A. Alvarez, J.E. Hurtado / Computers and Structures 142 (2014) 54–63 55



Download English Version:

https://daneshyari.com/en/article/509713

Download Persian Version:

https://daneshyari.com/article/509713

Daneshyari.com

https://daneshyari.com/en/article/509713
https://daneshyari.com/article/509713
https://daneshyari.com

