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a b s t r a c t

An efficient technique is presented for evaluation of a domain integral in which the integrand is defined
by its values at a discrete set of nodes with highly varying density. The proposed technique uses quadtree
and octree techniques for 2D and 3D domains, respectively, so that the background of the integration
domain can be divided into a few partitions with different grades of nodal density. The integrals over
all partitions are then evaluated and added together to get the value of the whole-domain integral. Some
numerical examples are given to show the accuracy and efficiency of the presented method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Computation of domain integrals using the numerical values of
integrands at some internal and boundary points is necessary in
some important computational methods, especially for meshfree
methods based on weak formulation [1]. In addition, to solve tran-
sient, nonlinear, or nonhomogeneous problems using the boundary
element method (BEM) we have to consider some internal points
besides boundary nodes. These internal points can also be consid-
ered for meshfree evaluation of domain integrals appearing in the
BEM formulation of the problem [2–7].

Meshfree methods have achieved remarkable progress in recent
years and they are still an active research area [8–10]. The existing
meshfree methods can be classified as being based on particles
[11,12], strong forms [13–15], weak forms [16–20], or weakened
weak forms [21–24]. In the methods based on particles and strong
forms, discretization is carried out directly from the governing dif-
ferential equations. For the weakened weak form methods, there is
no need for any domain integration for the construction of equa-
tions. However, in the methods based on weak forms, the algebraic
equations are generated from domain integrals. Compared to the
strong form methods, meshfree methods based on weak forms
usually result in solutions with better stability and higher accu-
racy, and are hence widely used [20].

In general, numerical integration in meshfree methods can be
more challenging than that in the conventional finite element
method (FEM) [25]. However, in the FEM with polygonal elements
[26,27], the integration over elements encounters some difficulties.
In a two-level method for integration over polygons [28], the
domain of the polygon is mapped onto a regular polygon. Then,
the regular polygon is triangulated and the integral over each
triangle is evaluated by another mapping. Natarajan et al. [29]
presented a one-level method based on Schwarz-Christofel map-
ping for evaluation of integrals over arbitrary polygonal domains.

The overall performance of the meshfree methods rely deeply
on the accuracy and efficiency of the domain integrations. The
importance of the domain integration has been widely reported
in the studies for the element free Galerkin (EFG) method [16],
the radial point interpolation method (RPIM) [30], the reproducing
kernel particle method (RKPM) [17], the hp clouds method [31],
and the partition of unity (PU) method [32]. In addition, in the local
boundary integral equation (LBIE) and the meshfree local Petrov–
Galerkin (MLPG) methods, a local Galerkin weak form is used,
and thus complicated integrations are also required for the local
smaller domains [33].

Using a uniform background mesh [16,19] is currently the most
popular technique for the evaluation of domain integrals in
weak-form meshfree methods. The nodal integration [34] and the
stabilized conforming nodal integration [35,36] methods are other
techniques for evaluation of domain integrals in meshfree meth-
ods. These methods are based on the construction of Voronoi dia-
gram, and are known to have the so-called temporal instability
problems. Racz and Bui [37] proposed another method to get rid
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of the difficulties associated with the use of background mesh.
They used specific mapping techniques to map a complex integra-
tion domain to simple domains. Another method, which is widely
used for evaluation of domain integrals in meshfree methods, is the
Gaussian quadrature along with a finite element background mesh
[1]. In this context, a triangular or tetrahedral finite element mesh
is generated using the field nodes. The vertices of the triangles or
tetrahedrons are the same as the nodal points and the elements
are used for evaluation of the domain integrals. Such elements
are generated solely for evaluation of the domain integrals, and
the interpolation of the primary variable is performed with the
standard meshfree interpolation techniques. This integration tech-
nique usually results in more accurate results; however, this tech-
nique makes the method being not ‘‘truly’’ meshfree. A helpful
review and discussion of frequently used integration techniques
in meshfree methods can be found in [38,39].

In some problems, the field variable, e.g., temperature, displace-
ment, or stress may have high local variations in some parts of the
region. For such problems, two approaches are usually utilized to
obtain accurate solutions. The first approach is to use a dense grid
of nodes in the region with high variation of the field variable
[40–42]. The second approach is based on the enrichment of the
basis functions approximating the field variables [43–46]. The
enrichment methods are widely used in meshfree methods for
fracture analysis. These methods can be employed with or without
asymptotic enrichment [47,48].

Hematiyan [49,50] presented a method based on a simple
Cartesian transformation for evaluation of 2D and 3D domain inte-
grals in the BEM. Khosravifard and Hematiyan [51] extended the
Cartesian transformation method (CTM) for evaluation of domain
integrals in meshfree methods. The CTM is a truly meshfree tech-
nique and is more efficient than the integration methods based
on a background mesh [51]. However, the CTM is not efficient
enough for evaluation of an integral over a domain in which the
density of nodes has a severe variation over the domain.

In this paper, a novel method for evaluation of domain integrals
with non-uniform distribution of nodes is developed. We assume
that the variation characteristics of the integrand are captured by
the distribution of the nodes. Therefore, the distribution of the
integration points is adjusted to that of the field nodes, i.e. a dense
distribution of integration points is automatically selected where
the nodes are closer to each other. This method is called back-
ground decomposition method (BDM) for convenient reference.
Using quadtree and octree partitioning algorithms for 2D and 3D
domains, respectively, a square (cube) covering the problem
domain is converted into a few partitions with different grades of
nodes density. The integral over each partition is separately evalu-
ated. It should be mentioned that there are several variations of the
FEM in which the analysis mesh is not conformal to the geometry.
The use of quadtree-based strategies for mesh generation and/or
integration is also studied in these methods. Some of these meth-
ods are generalized FEM [52,53], Cartesian grid FEM [54], extended
FEM [55,53], fixed grid FEM [56,57], and immersed FEM [58]. On
the other hand, adaptive refinement strategies in meshfree meth-
ods may be based on quadtree and octree partitioning algorithms
[59].

The BDM is especially useful for the evaluation of domain inte-
grals in problems where the density of nodes varies severely in the
problem domain. Problems associated with fracture mechanics,
stress concentration, application of point or line loads are some
examples of such cases. In such problems, a more compact
distribution of nodes is selected in regions, where a problem vari-
able has a sharp slope or even is singular. We will demonstrate
through some examples that the BDM can accurately and effi-
ciently evaluate domain integrals in domains with irregularly
and non-uniformly distributed nodes. The accuracy of the

presented method is also compared with the standard integration
technique that uses the well-established Gaussian quadrature with
triangular finite element background mesh [1]. This technique is
specially selected for comparison purposes because it is regarded
as one of the most accurate methods for evaluation of domain inte-
grals in the meshfree weak-form methods. Through the numerical
examples, it will be assessed that the BDM is as accurate as the
Gaussian quadrature with finite element (FE) background mesh,
while being independent of domain meshing. To be more specific,
with the same number of integration points and floating-point
operations, the BDM is slightly more accurate than the Gaussian
quadrature with FE background mesh. However, the main advan-
tage of the BDM is getting rid of the operations associated with
meshing of the problem domain. This issue is especially important
in the analysis of problems requiring remeshing of the problem
domain. In such problems, addition or removal of the nodes to or
from the problem domain poses no difficulty on the BDM proce-
dure. This is in contrast to the integration methods based on FE
background mesh, which need to form a new mesh in case of addi-
tion or removal of nodes.

2. Description of the problem

Consider that the following domain integral is to be computed
numerically

I ¼
Z

X
gðxÞdX: ð1Þ

where X is the integration domain and the integrand g is a regular
function. It is assumed that the function g is represented by its val-
ues at M discrete nodes. The nodes may be distributed over the
domain with an approximately uniform density as shown in
Fig. 1(a) or with a non-uniform distribution as shown in Fig 1(b)
and (c).

In the present work, we present a meshfree integration tech-
nique for the evaluation of the domain integral in Eq. (1). In this
method, the local geometry of the problem domain, as well as
the nodal distribution of the meshfree method are taken into
account for the selection of the integration points. This is to ensure
that each part of the domain receives adequate density of integra-
tion points for the desired accuracy in the evaluation of the domain
integral.

3. Meshfree interpolation methods

Meshfree interpolation methods are used to interpolate a set
of discrete data scattered through a domain and on its boundary
using local nodes without considering their connectivity. There
are three different types of meshfree interpolation techniques,
i.e., finite integral representation, finite series representation,
and finite differential representation methods [1]. Finite series
representation methods are more popular and are briefly
described in this section. These methods are used to obtain an
approximate function, based on the nodal values of a discrete
set of data, i.e.

gðx; y; zÞ ¼
Xm

j¼1

/jðx; y; zÞgj ¼ UTg; ð2Þ

where the vector g contains the nodal values of the function g at the
m local nodal points and U is the shape function vector of the
meshfree interpolation method. In the case of local interpolation
methods, m is less than the total number of nodes. By the direct dif-
ferentiation of Eq. (2), the derivative of the function can also be
found to the desired order. For instance, the first-order derivative
of g can be written as:
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