
Component mode synthesis with subspace iterations for controlled
accuracy of frequency and mode shape solutions

Klaus-Jürgen Bathe a,⇑, Jian Dong b

a Massachusetts Institute of Technology, Cambridge, MA 02139, USA
b ADINA R & D, Inc., Watertown, MA 02472, USA

a r t i c l e i n f o

Article history:
Received 31 January 2014
Accepted 16 March 2014
Available online 9 May 2014

Keywords:
Frequencies and mode shapes
Component mode synthesis
Craig–Bampton scheme
Bathe subspace iteration method
Control of errors

a b s t r a c t

The objective in this paper is to present an approach to improve component mode synthesis solutions
using subspace iterations to obtain frequency and mode shape predictions of controlled accuracy. In tra-
ditional component mode synthesis analyses, the calculated frequencies and mode shapes are approxi-
mations of the exact frequencies and mode shapes of the finite element model, the error is unknown,
may be large, and is usually not assessed. In the approach given here, the error is assessed and can be
reduced to the desired level. The Craig–Bampton component mode synthesis is used, but the solution
approach is also directly applicable to any other component mode synthesis scheme. Some example solu-
tions are given to illustrate the use and the effectiveness of the solution approach.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Component mode synthesis solution techniques [1,2] are
widely used in finite element analyses. The solution approach
was proposed long ago by Hurty [3], but when seen as a domain
decomposition technique can in fact be traced back to much earlier
work, see Ref. [4]. These methods can be effective for the solution
of frequencies and mode shapes when complex structures are
analyzed, as, for example, in the airplane industries. The represen-
tation of the complete structure is based on using large substruc-
tures. These individual structures, or components, are typically
first analyzed in detail for their frequencies and mode shapes,
and dynamic response, by different analysis groups. Then the com-
plete structure is considered as an assemblage of the components,
which can lead to a very large finite element system. However,
usually only the lowest p frequencies and corresponding mode
shapes of the complete finite element system with n degrees of
freedom are needed, where p� n. The basic approach of a compo-
nent mode synthesis analysis is to use the mode shape solutions of
the individual components, i.e. substructures, to obtain approxi-
mations to the exact p frequencies and mode shapes of the
complete model [2]. An important such procedure used is the
Craig–Bampton method [5].

Since the component mode synthesis procedures only give
approximate solutions to the exact eigenvalues and vectors

(frequencies and mode shapes) of the complete structural model,
it can be important to have some error measure, see Refs. [4,6]
and the many references therein, to ensure the reliability of a
response prediction. The scheme should give an approximation
to the error in the solution when compared to the exact solution,
which of course is unknown. Considering that the calculated eigen-
values are always larger than the exact values [2], the error mea-
sure should ideally give a proven upper bound to the exact error,
be close to the exact error, and should be inexpensive to compute.
Also, if the error is too large, a simple scheme to reduce the error
should be available. This approach is valuable because in today’s
finite element analysis practice, a strong emphasis should be on
the reliability of the numerical solutions rather than merely on
computational effectiveness. The reliability should indeed be a
requirement in the solution of the required frequencies and mode
shapes, also because large systems of finite element equations can
now be solved very accurately using the Lanczos transformation
method and the Bathe subspace iteration technique [2].

As is well known, component mode synthesis solutions are clo-
sely related to Rayleigh–Ritz analysis and hence also to a subspace
iteration. It follows therefore that the error measure used in the
Bathe subspace iteration method may also be attractive for use
in a component mode synthesis solution [2,7–9].

In recent work, Yin et al. [10] presented automated multilevel
substructuring (AMLS) techniques using also the Bathe subspace
iteration method with an error indicator. However, the emphasis
in the following sections is on using a proven error bound and a sim-
ple scheme to decrease the error, when so wanted, monotonically to
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the desired value. This approach is used to obtain reliable solution
results.

In the following sections, we review the Craig–Bampton compo-
nent mode synthesis analysis and show how, in a natural further
step, the Bathe subspace iteration method can be used to measure
and reduce the error. While we focus on the Craig–Bampton tech-
nique, other methods can also be used with the given approach and
error measure. Some illustrative example solutions are included to
show the applicability of the solution approach.

2. The Craig–Bampton method

We consider the eigenvalue problem

Ku ¼ kMu ð1Þ

where K and M are the symmetric stiffness and mass matrices of
the complete finite element system of n equations. We seek the
smallest p eigenvalues and corresponding eigenvectors, with
p� n. Without loss of generality, we assume that the stiffness
and mass matrices K and M are positive definite, and hence the
eigenvalues we seek are

0 < k1 6 k2 � � � 6 kp�1 6 kp ð2Þ

with the corresponding M-orthonormal eigenvectors u1; . . . ;up. For
an unsupported structure we would simply apply a shift [2].

The Craig–Bampton method is a well-known component mode
synthesis technique, and was designed when the calculation of the
exact eigenvalues and vectors (or very close approximations
thereof) of very large finite element models was technologically
out of reach, or at least computationally very expensive to perform.
The method is also naturally optimizing the workflow by using, in
the solution of Eq. (1), the already calculated mode shapes of the
components, i.e. of the substructures, that were already considered
by different analysis groups [1–5].

Consider a generic finite element model as shown in Fig. 1. For
the development of the governing equations, the dynamic equilib-
rium equations are partitioned as follows

Mbb Mbi
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� �
€ub
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where the entries in ub refer to the r degrees of freedom of the
boundary nodes and the entries in ui correspond to the (n � r)
degrees of freedom of the interior (non-boundary) nodes. In the
Craig–Bampton procedure the following transformation is used [5]
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ub
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where I is the identity matrix, Un corresponds to s normal modes
(corresponding to the smallest eigenvalues) with all boundary
degrees of freedom fixed, usually s� n, Uc is given as

Uc ¼ �K�1
ii Kib ð5Þ

and q represents generalized displacements. The columns in Uc

represent static constraint modes, that is, the jth column represents
the static displacements at all interior nodes when all boundary
degrees of freedom are fixed except the jth boundary degree of free-
dom (corresponding to that column) is set to unity.

Hence the procedure uses the transformation matrix

W ¼
I 0

Uc Un

� �
ð6Þ

where W is of dimension n � (r + s). Calculating as in a Rayleigh–
Ritz solution [2]

Kr ¼ WT KW ð7Þ

Mr ¼ WT MW ð8Þ

the reduced eigenvalue problem is solved

KrX ¼MrXq ð9Þ

The eigenvalue approximations are given in q and the eigenvector
approximations are listed in U as

U ¼ WX ð10Þ

Various modifications of this basic technique are of course possible,
but the essence of all of the related procedures are the steps in Eqs.
(7)–(10), with different transformation matrices [1–4].

3. The subspace iteration method

Here too we consider the eigenvalue problem in Eq. (1) and seek
the solution of the p lowest eigenvalues and corresponding
eigenvectors.

The subspace iteration procedure was developed to simulta-
neously solve for the required eigenpairs ðki;uiÞ accurately, see
Refs. [2,7–9], and has been used abundantly in engineering and
the sciences. The basic equations of the Bathe subspace iteration
method are:

Pick q starting iteration vectors, q > p, to estabish X0 and then
iterate with k = 1,2,3, . . .

KXk ¼MXk�1 ð11Þ

Kk ¼ XT
k KXk ð12Þ

Mk ¼ XT
k MXk ð13Þ

KkQ k ¼MkQ kKk ð14Þ

Xk ¼ XkQ k ð15Þ

until the following convergence tolerance is passed by all eigen-
values in Kk to be calculated [2,9]. Since [2,11]
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the convergence tolerance to be reached is
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Fig. 1. Generic finite element model using substructuring; the boundary nodes are
the nodes shared by substructures.
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