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The Quasi-Newton Inverse Least Squares method has become a popular method to solve partitioned
interaction problems. Its performance can be enhanced by using information from previous time-steps
if care is taken of the possible ill-conditioning that results. To enhance the stability, filtering has been
used. In this paper we show that a relatively minor modification to the filtering technique can
substantially reduce the required number of iterations.
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1. Introduction

Often in nature different systems interact, like fluids and
structures, heat and electricity, and populations of species. From
the growing number of conferences, publications and software
releases it is clear that in silico simulations of these kinds of
coupled systems are becoming increasingly important in the
engineering community. Examples can be found in aeronautics
(e.g. [38,40-43,62,77,83]), bio-medical science (e.g. [3,7,16,31,32,
48,58,78,86,88]), civil engineering (e.g. [13,33,46,60,61,76,80,81,9
1,92]), plasma physics (e.g. [55,56]), to name but a few. In this
paper we will focus solely on fluid-structure interactions.

For these types of problems powerful solvers often already
exist for each physical domain (e.g. structural or fluid). Even so,
development of similar tools for multi-physics problems is still
ongoing and the paths followed to obtain such a solver can be
broadly put in one of the following categories:

e Monolithic or simultaneous solution: the whole problem is
treated as a monolithic entity and solved simultaneously with
a specialized ad hoc solver.
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e Partitioned solution: the physical components are treated as
isolated entities that are solved separately. Interaction is mod-
eled as forcing terms and/or boundary conditions.

The relative merits of these methods are very problem depen-
dent. The advantage of the monolithic approach is the enhanced
stability [71]. This however comes at the cost of having to develop
specialized software for each type of interaction problem, where
the resulting solution systems are often very large. Furthermore,
it can be inappropriate to use the same basic formulation for both
types of problems, which further forces the user to treat non-
linearities in the same way for all components. Despite this the
monolithic approach has proven to be a very popular method,
e.g. [4,7,14,59,79,84].

The partitioned approach allows for the use of available special-
ized solvers for each physical component, on the condition that the
coupling effects can be treated efficiently. The latter is often feasi-
ble for problems where the systems only weakly interact. Strongly
coupled problems, on the other hand, still pose a real challenge.
Many articles can be found on partitioned methods in the litera-
ture, e.g. [13,23,44,68-70,75,77,87].

In this paper we will solely focus on the partitioned approach,
as the main aim of this work is to improve the performance of
the Quasi-Newton Least Squares family of methods, in particular
QN-ILS [21], which has found widespread acceptance as a means
to accelerate the convergence of partitioned solvers. We are not
concerned with the solution process of the constituent physical
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problems as these are assumed to be handled by specialized sol-
vers which we assume to be black box operations of which no
specific details can be modified or even assessed (e.g. the Jacobian).
Furthermore we will assume that the computing time of these
black boxes is sufficiently high that the actual computing time of
the quasi-Newton step can be neglected.

To accelerate the convergence of a time-dependent problem it
can be beneficial to use “histories” from previous time-steps to
construct an approximation of the (inverse) Jacobian at the current
time-step. This might however lead to numerical breakdown, as
the risk of constituent vectors becoming (nearly) linearly depen-
dent increases. To avoid this, QR-filtering has been applied in the
past [22]. In this paper we try to improve the convergence perfor-
mance of QN-ILS by introducing a better form of filtering.

This paper is organized as follows: in Section 2 we give a short
overview of QN-ILS; in Section 3 we explain the idea of recovery of
data from previous time-steps, while in Section 4 we address the
topic of filtering. The currently used method of QR-filtering is
explained, together with two new approaches, one based on the
ideas of the orthogonalization performed in QR-decomposition,
the other on that of Proper Orthogonal Decomposition. In Section 5
the performance of the different filtering techniques is tested and
compared using different numerical applications, after which we
end with a short conclusion.

2. The Quasi-Newton Inverse Least Squares (QN-ILS) method
2.1. Problem setting

In general we are interested in non-linear surface-coupled
problems that can be mathematically stated in the following form:

{HQ:p
5(p) =8

where F: D CR™ - R : g+ F(g) and S: Ds C R" — R™ : p— S(p).

Each equation describes (the discretized equations of) a physi-
cal problem that is spatially decomposed. In fluid-structure inter-
action problems F(g) = p could give the pressure p on the interface
between fluid and structure for a given geometry g, while S(p) = g
could give the deformed geometry of that same interface under
influence of the pressure exerted on it by the fluid.

We limit p and g to values on the interface between the two
physical problems. In this way the physically decoupled nature of
the problem is exploited. This approach can be regarded as a spe-
cial case of heterogeneous domain decomposition methods [28] and
limits the number of variables that the coupling technique will
be dealing with, even though the black box solvers that give F(g)
and S(p) might use a substantially higher number of internal vari-
ables; for instance in the case of a fluid-structure interaction prob-
lem where the pressure is passed from the fluid to the structure,
the fluid velocity is an internal variable for the flow solver as are
all nodal values of the pressure that are not on the interface.

Alternatively, (1) can be written as the fixed point problem

(1)

F(S(p)) = H(p) =p (2)
or the root-finding problem
H(p) —p =K(p) = 0. 3)

Using (2) or (3) means that we have actually lumped both systems F
and S together into one system (either H or K), which in general has
a lower number of variables than the sum of the number of vari-
ables of both constituent systems F and S.

We assume that H and K satisfy the following hypotheses,
which are typical when working with Newton and quasi-Newton
type methods [73]:

(1) H (and hence K) are continuously differentiable in an open
set D.
(2) K(p) = 0 has one solution p* in D.

(3) (K’(p))’1 exists and is continuous in an open set containing
p.

Remark 2.1. We assume the operations F(g) and S(p) (and hence
H(p) and K(p)) are black box systems, representing the propriety
solvers, with a high computational cost and of which nothing is
known about the Jacobian; neither do we make assumptions about
this Jacobian like sparseness, symmetry, etc. For that reason we
count the performance of a method by the number of times F(g)
or S(p) are executed. Requirements like actual CPU-time or storage
are not taken into consideration.

Remark 2.2. While we write the equations in (1) in explicit form,
this is only for convenience; any form is usable as long as for a
given value of g (resp. p) a corresponding value of p (resp. g) can
be computed that satisfies the equations in (1).

Remark 2.3. We could have used (and sometimes will use)
S(F(g))—-g=0 4)

instead of (2). The choice between both can depend on

e practical implementation issues due to the solvers used;

o the relative sizes of n and m. If n < m, resp. n > m, the use of (3),
resp. (4), will result in a problem that is defined on a space with
the lowest dimension.

Remark 2.4. When (1) is derived from a physical problem, it often
represents the equations obtained after discretizing the continuous
equations in time and space, and thus only represents the evolu-
tion over one time-step (see Section 3). This is an example of
how we could be presented with a series of related problems.

In this context we can write (1) as

{Eﬂgngazp
St41(D: P, &) = &

where the subscript t +1 (t=0,1,...) denotes the time-level at
which the problem is solved. The solution of (5) will give the values
of p and g at that time-level (p,, ,, resp. g;.); the extra arguments p,
and g, are added to show that the solution at the next time-level
depends on the values at the previous time-level.!

In what follows we will almost always simply write F(g) and
S(p) and assume it is clear from the context that this either
describes an isolated problem or a problem solved over one time-
step.

(5)

2.2. QN-ILS

The Quasi-Newton Least Squares family of algorithms was
developed starting from the Block Quasi-Newton Least Squares
algorithm (BQN-LS) [19,20,88] even though the name BQN-LS
was not used until later [21]. From BQN-LS, the quasi-Newton
Least Squares algorithm (QN-LS) was developed, which was first
introduced in [51]. BQN-LS and QN-LS are very closely related to
the point that for affine problems both are algebraically identical
[54].

1 It is possible that it depends on more than one of the previous time-levels.
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