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a b s t r a c t

Engineering structures are often assembled by subsections with various levels of energy dissipation,
which lead to great difficulties in analyzing. In this paper, a direct time integration method is proposed
to solve the dynamic responses of structural systems involving multiple nonviscous damping models.
Based on a general non-viscously damped model, an extended state-space scheme for the damped system
is derived. Then, an implicit time integration method using linear approximations is developed built on
the extended state-space formalism. The stability and efficiency of the method are discussed by theoret-
ical and numerical analyses. The method is illustrated by two examples.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Damping is a significant characteristic parameter describing the
energy-dissipation and longtime regarded as a key factor in the
dynamic behavior of vibrating systems. In structure dynamics,
the viscous damping model has been widely applied in the past
centuries for its conceptual simplicity. The damping force in this
model is often assumed to be proportional to velocity. However,
applications of sophisticated engineering systems [1–6] and com-
posite materials [7,8] manifest that the classical viscous damping
model does not properly represent the complicated damping char-
acter in these structures. Therefore, nonviscous damping models
[9–19] are proposed in recent years with an aim to describe damp-
ing energy-dissipation in a more general manner compared to the
limited scope offered by the viscous damping model. The nonvis-
cous damping models assume that the damping forces depend on
the past history of motion via convolution integrals over some
decaying kernel functions. As a result, classical dynamic analysis
methods for the viscous damping model cannot be applied directly
to the nonviscously damped systems and new methods are needed
to be developed.

In recent years, researchers have studied the dynamic responses
of the nonviscously damped systems. In general, any modifications
of kernel function may lead to some mathematical difficulties and
changes for solving the corresponding dynamic equations. Some

authors developed methods in an attempt to efficiently calculate
the eigenproblems of the nonviscously damped systems under dif-
ferent damping models. The methods can be classified as exact
state-space approaches [20–24], approximated methods [25–32]
and model reduction methods [4,33–38]. Unfortunately, the afore-
mentioned methods are still time-consuming due to the eigen-
value problems involved. Besides, some frequency-domain
methods [39,40] are also proposed to analyzing the exponentially
damped linear systems, but the efficiency and accuracy of the
frequency-domain methods are restricted by the Laplace and
inverse Laplace transform between frequency- and time-domain.

Direct time-integration methods, including implicit methods
[41–46] and explicit methods [47–49], have been successfully
applied to compute the dynamic responses of the viscous damping
systems subjected to complicated dynamic loadings. Therefore,
some researchers developed the direct time-integration methods
to capture the dynamic responses for viscoelastic damping sys-
tems. Muravyov [50–52] proposed free and forced vibration
responses methods of nonviscously damped systems in time-
domain. Later, Adhikari and Wagner [53] presented a direct time-
domain integration method for exponentially damped linear
systems based on the extended state-space approach proposed
by Wagner and Adhikari [24]. Then, Cortés and Elejabarrieta [26]
developed a direct integration formulation by transforming the
equation of motion with convolution integrals into a differential
equation with time derivative orders higher than two via Laplace
transform. The method did not employ any internal variables
which normally enlarge the size of the problem, but it can be only
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used in the case when exponential damping kernel function no
higher than two. However, the previously mentioned time-
domain methods are all restricted to exponential damping kernel.
Liu [54] and Puthanpurayil et al. [55] extended implicit methods to
obtain the dynamic responses of nonviscous damping systems. The
methods are based on Newmark integration method and generic to
all kernel functions. Lately, Liu [56] developed explicit method of
dynamic response to nonviscously damped systems. The method
is proven more efficient than the implicit methods [54,55], but
the stable conditions are not clear and need to be further
investigated.

Nowadays, with the rapid development of modern science and
technology, engineering structures become increasingly complex
and large. Two or more subcomponents with significantly different
levels of energy dissipation are encountered frequently in dynam-
ical designs. Thus, these damping systems often involve multiple
damping models. Unfortunately, existing computational methods
for damped systems are only dealing with the dynamic analysis
of the system with only one damping models and may have some
limitations to handle the problem if two or more damping models
are considered. Recently, Li and Hu [57] proposed a unified way to
express damping models by using a fraction formula of rational
polynomials. Then, a state-space approach for the analysis of linear
systems with multiple damping models have also developed. The
dynamic responses of the system were calculated by mode-
superposition method using eigensolutions obtained by the state-
space method. Although the method gives exact results when con-
sidering all elastic and nonviscous modes, it requires tremendous
computational time, especially in the case involving multiple
damping models.

Due to the problems mentioned above, a time-domain approach
for multiple nonviscous damping models is proposed. By introduc-
ing a general nonviscously damped model, an extended state-space
formulation is derived for the generalized damped systems. Based
on this, an implicit time integration method is developed using lin-
ear approximations of displacements, velocities and internal vari-
ables. The method is proven to be unconditionally stable. The
advantage of the proposed method over the traditional mode
superposition method is that the final recurrence formulas to be
solved contain nothing but a linear combination of the system
matrices. It will be demonstrated by two numerical examples that
the proposed method is more efficient and accurate compared to
other methods.

The paper is organized as follows: in Section 2, we will briefly
review some preliminary concepts and definitions of multiple
damping models. In Section 3, We will introduce the mode super-
position method for viscoelastically damped systems and extend
the implicit method to be applicable to multiple damping models.
Then in Section 4, A direct time-domain approach for multiple
damping models is proposed to calculate the dynamic response
of the system. Besides, the stability condition is also discussed
and the summary of the method will be displayed in Section 4 to
make it convenient to be coded up. The results and discussions
of two numerical examples are presented in Section 5 in order to
assess the performance of the proposed method. The paper ends
with some conclusions in Section 6.

2. Theoretical background

The equations of motion of an N-degree-of-freedom (DOF) lin-
ear system with nonviscous damping, which depend on the past
history of motion via convolution integrals over kernel functions,
can be expressed by [24,54,56,58]

M€xðtÞ þ
Z t

0
gðt � sÞ _xðsÞdsþ KxðtÞ ¼ fðtÞ ð1Þ

together with the initial conditions

xðt ¼ 0Þ ¼ x0 2 RN; _xðt ¼ 0Þ ¼ _x0 2 RN ð2Þ
Here M 2 RN�N is the mass matrix, K 2 RN�N is the stiffness matrix,
xðtÞ 2 RN is the displacement vector, fðtÞ 2 RN is the forcing vector
and gðt � sÞ is the matrix of damping kernel function. In special
cases, when gðt � sÞ ¼ Cdðt � sÞ, where dðtÞ is the Dirac delta func-
tion and C is a constant matrix, Eq. (1) reduces to the case of viscous
damping system. Therefore, the viscoelastic damping model is con-
sidered as a further generalization of the familiar viscous damping.

In theory, any mathematic model is a possible candidate for a
nonviscous model as long as it can make the energy dissipation
functional nonnegative. Some well-known damping models are
derived by authors to accurately describe the dissipative mecha-
nisms of viscoelastic materials. Exponential damping model is
widely used to model the viscoelastic damping system [23,24]

gðtÞ ¼
Xm
k¼1

clk expð�lktÞ ð3Þ

or, in the Laplace domain

GðsÞ ¼
Xm
k¼1

clk

sþ lk
ð4Þ

where constants c 2 Rþ;lk 2 Rþðk ¼ 0;1;2; . . .Þ are known as the
relaxation parameters, and m denotes the number of relaxation
parameters used to describe the viscoelastic damping behavior.

The Biot model [9,10] is denoted by

gðtÞ ¼ a0dðtÞ þ
Xm
k¼1

ak expð�bktÞ or GðsÞ ¼ a0 þ
Xm
k¼1

ak
sþ bk

ð5Þ

where constants ak; bk 2 Rþðk ¼ 0;1;2; . . .Þ are known as the relax-
ation parameters.

The Golla–Hughes–McTavish (GHM) model [11,12] is expressed
as

gðtÞ ¼ G0

Xm
k¼1

ak
b̂2ke�b̂1kt � b̂1ke�b̂2kt

b̂2k � b̂1k

or

GðsÞ ¼ G0

Xm
k¼1

ak
s2 þ 2n̂kx̂ks

s2 þ 2n̂kx̂ksþ x̂2
k

ð6Þ

where constants G0; b̂1k; b̂2k; x̂k; f̂k 2 Rþ are also known as the relax-
ation parameters and the relationships of the parameters are

b̂1k ¼ x̂kn̂k � x̂k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂2k � 1

q
; b̂2k ¼ x̂kn̂k þ x̂k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂2k � 1

q
ð7Þ

The Anelastic Displacement Field (ADF) model [13,14] express
the damping kernel function as

gðtÞ ¼
Xm
k¼1

Dk expð�XktÞ or GðsÞ ¼
Xm
k¼1

Dk

sþ Dk
ð8Þ

where constants Dk;Xk 2 Rþ are relaxation parameters.
Some authors also consider other damping models, such as the

generalized Maxwell model [15], the fractional derivative model
[18] and the Gaussian damping model [19] (see e.g., Ref. [59] for
further reading). However, for Eq. (1), no classical numerical meth-
ods can be used directly for its solution of dynamic responses.
Besides, any modifications of the kernel functions may lead to
some mathematical difficulties and changes for solving the corre-
sponding dynamic equations. As a result, some researchers
[1,30,39,53,60,61] devoted to calculate the dynamic response
under different viscoelastic damping systems. Unfortunately, the
majority of the proposed methods are only restricted to systems
with only one specific damping model, which have some
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