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Nonparametric transformation to white noise
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Abstract

We consider a semiparametric distributed lag model in which the ‘‘news impact curve’’ m is nonparametric but the

response is dynamic through some linear filters. A special case of this is a nonparametric regression with serially correlated

errors. We propose an estimator of the news impact curve based on a dynamic transformation that produces white noise

errors. This yields an estimating equation for m that is a type two linear integral equation. We investigate both the

stationary case and the case where the error has a unit root. In the stationary case we establish the pointwise asymptotic

normality. In the special case of a nonparametric regression subject to time series errors our estimator achieves efficiency

improvements over the usual estimators, see Xiao et al. [2003. More efficient local polynomial estimation in nonparametric

regression with autocorrelated errors. Journal of the American Statistical Association 98, 980–992]. In the unit root case

our procedure is consistent and asymptotically normal unlike the standard regression smoother. We also present the

distribution theory for the parameter estimates, which is nonstandard in the unit root case. We also investigate its finite

sample performance through simulation experiments.
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1. Introduction

In this paper we discuss the estimation of the unknown quantities in the model

BðLÞY t ¼ AðLÞmðX tÞ þ et, (1)

where et is a martingale difference sequence with respect to the past of Y t and current and past regressors X t,

while AðLÞ ¼
P1

j¼0 ajL
j and BðLÞ ¼

P1
j¼0 bjL

j are lag polynomial operators with a0 ¼ b0 ¼ 1 for identifica-

tion, where Lxt ¼ xt�1. The function mð:Þ is assumed to be unknown but smooth, and is the object of central
interest, although the dynamics of the model represented by AðLÞ;BðLÞ are also fundamental to the
interpretation.
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We first discuss a special case of central interest, the nonparametric regression model

Y t ¼ mðX tÞ þ ut; t ¼ 1; . . . ;T , (2)

where the covariates follow some stationary mixing process, while the residual process ut satisfies

AðLÞut ¼ et ¼
X1
j¼0

ajut�j . (3)

In this case, AðLÞY t ¼ AðLÞmðX tÞ þ et, which is a special case of (1) with AðLÞ ¼ BðLÞ. The parametric version
of the regression models (2) and (3) is a standard teaching topic in graduate econometrics, Harvey (1981,
Chapter 6). In the semiparametric model there are many standard estimators of m and of the parameters of
AðLÞ that are consistent under summability conditions on A, see, for example, Robinson (1983), Bierens
(1983), Masry and Fan (1997), Hidalgo (1997), and Fan and Yao (2003). However, unlike in the parametric
case, the standard kernel regression smoothers do not take account of the correlation structure in X t or ut and
estimate the regression function in the same way as if these processes were independent. Furthermore, the
variance of such estimators is proportional to the short run variance of ut, s2u ¼ varðutÞ and does not depend
on the regressor or error covariance functions covðX t;X t�jÞ, covðut; ut�jÞ, ja0. This is a bit surprising in
comparison with the parametric case. One might think that there is useful information in the autocorrelation
structure for estimation of the mean. This point has been addressed recently by Xiao et al. (2003) who
proposed a more efficient estimator of m based on a prewhitening transformation

Y t �
X1
j¼1

ajðY t�j �mðX t�jÞÞ ¼ mðX tÞ þ et, (4)

where the right-hand side is now a standard nonparametric regression with whitened errors. The transform
implicitly takes account of the autocorrelation structure. In practice they replaced the unknown quantities on
the left-hand side by preliminary estimates of m and ajðaÞ. Their procedure improves in terms of variance over
the usual kernel smoothers.

Model (1) is more general than nonparametric regression with autocorrelated errors and is perhaps more
rightly viewed as a generalization of the distributed lag model. The traditional distributed lag model (with
mðxÞ ¼ x) has been very popular in economics, Dhrymes (1971).1 More recently, Hendry et al. (1984) reviewed
the specification of such models and gave a taxonomy of special cases. It can be motivated from some simple
economic relationships being distorted by adaptive expectations, partial adjustment, etc., see Harvey (1981,
Chapter 7). Suppose there is a latent variable Y � that has some equilibrium relationship with covariate X ,
which in general can be nonlinear so that Y �t ¼ mðX tÞ. Then suppose that actual Y only responds to Y � with

some lagging mechanism, for example, Y t � Y t�1 ¼ g½Y �t � Y t�1� þ et for some g 2 ð0; 1Þ, then we obtain a

special case of (1).2 The lags arise because production takes time or because agents take time to respond to a
signal or because there are institutional constraints. The traditional applications were in, for example,
production studies where Y t is output and X t is the capital/labour ratio of a given firm or industry observed
over time. More recent applications have been in rational expectations models where the data are at different
frequencies, Hansen and Hodrick (1980). The issues concerning formulation and estimation of the lag
polynomials A;B are pretty much resolved in the linear case, see Hannan and Deistler (1988) for a more recent
discussion in the multivariate case. Linearity of m is just a convenience and was adopted many years ago when
computational and technical issues were binding. We allow for nonlinear m because for some problems linear
m is not well motivated and at odds with the data. Note that model (1) includes as a special case the so-called
NARMAX model introduced in Chen and Billings (1989) and used frequently by systems engineers in which
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1Sims (1971) and Geweke (1978) consider a continuous time distributed lag model where Y ðtÞ ¼
R1
�1

aðsÞX ðt� sÞdsþ eðtÞ and the data

are observed at discrete time intervals in which case the (high frequency) discrete time approximation to this is like (1) with BðLÞ ¼ 1 and

AðLÞ ¼
P1

j¼�1 ajL
j for some aj related to the function að:Þ under some conditions.

2The usual properties of linear dynamic regression models can be extended to the nonlinear case. Thus, for example, we can define the

average instantaneous impact E½qY t=qX t� as equal to the average derivative of the function m ¼ E½m0ðX tÞ�, a quantity that has been

investigated elsewhere. The total dynamic average impact
P1

j¼0 E½qY tþj=qX t� ¼ E½m0ðX tÞ�
P1

j¼0ðBðLÞ=AðLÞÞj is proportional to the

instantaneous impact.
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