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Abstract

Our goal is inference for shape-restricted functions. Our functional form consists of finite linear combinations of basis

functions. Prior elicitation is difficult due to the irregular shape of the parameter space. We show how to elicit priors that

are flexible, theoretically consistent, and proper. We demonstrate that uniform priors over coefficients imply priors over

economically relevant quantities that are quite informative and give an example of a non-uniform prior that addresses this

issue. We introduce simulation methods that meet challenges posed by the shape of the parameter space. We analyze data

from a consumer demand experiment.
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1. Introduction

There are many examples in economics where theoretically consistent choice behavior is described by
multivariate functions subject to monotonicity and curvature restrictions. These functions include utility,
expenditure, indirect utility, production, cost, and profit functions.

Much empirical analysis in economics involves learning about these functions using data on the choices of
consumers and firms. There is a large literature on such inference. See Deaton and Muellbauer (1980), Diewert
and Wales (1987), Lau (1986), Matzkin (1994) and Terrell (1996).

Analysis typically begins with two choices: a parametric class of functions, and constraints on the parameter
vector. The constraints define a restricted parameter set.

The literature identifies two important objectives governing these choices, theoretical consistency and
flexibility. To a large extent, they are competing. Theoretical consistency refers to the extent to which the
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functions indexed by elements of the restricted parameter set satisfy the applicable monotonicity and
curvature restrictions over their domain. If the functions satisfy the restrictions throughout the domain, we
have global theoretical consistency. If they satisfy them at a point or in a region, we have local theoretical

consistency or regional theoretical consistency, respectively. Flexibility refers to the variety of functions indexed
by elements of the restricted parameter set, and it too may be more or less global, depending on how large is
the subset of the domain where the relevant flexibility properties hold.

Consider, for example, two commonly used classes of indirect utility functions: the constant elasticity of
substitution (CES) class, and the trans-log class. According to standard theory, indirect utility functions are
non-increasing and quasi-convex in income-normalized prices. The CES class of indirect utility functions, with
non-negativity restrictions on its parameters, is globally theoretically consistent. However, it is quite inflexible,
in the sense that elasticities of substitution cannot vary with prices and income. The trans-log class
(see Christensen et al. (1975)) is locally flexible in the sense that with appropriate choices of the parameters one
can attain arbitrary elasticities at a given point. However, it is not globally theoretically consistent: there are
values of the parameters for which the function is not everywhere on its domain non-increasing and quasi-
convex. We cannot rule out these values without renouncing local flexibility.

There are at least three distinct classes of functions whose flexibility allows the simultaneous approximation
of a continuous function, and any continuous derivatives it may have, on a compact subset X̄ of its theoretical
domain X . We call X̄ the restricted domain and note that it can be chosen to include the empirically relevant
region. The three classes consist of linear combinations of basis functions.

The simultaneous approximation of a function and its derivatives is important for two reasons. First, it is
desirable to approximate the behavior that a function represents, and theoretically consistent choices are often
given in terms of the function’s derivatives. Roy’s identity, for example, gives choices as functions of
derivatives of the indirect utility function. The proximity of two functions in, for example, the sup norm does
not guarantee the proximity of their derivatives: the difference of the two functions may have low amplitude
but high frequency ripples. A second reason is that by simultaneously approximating derivatives, we can
guarantee that the approximating function satisfies the applicable monotonicity and curvature restrictions,
which we can express in terms of derivatives.

Gallant (1981) launches this literature with his Fourier flexible form. Basis functions are sinusoidal, and any
continuous function on X̄ can be approximated arbitrarily closely in sup norm by a linear combination of a
finite number of these basis functions. If the function has bounded derivatives up to some order, we can
simultaneously approximate the function and these derivatives in sup norm.

Unfortunately, sinusoidal functions do not satisfy typical monotonicity and curvature restrictions and so it
can take many terms to build up an approximation. In the context of approximating indirect utility functions,
Gallant (1981) proposes adding linear and quadratic terms.

Barnett and Jonas (1983) use a multivariate Müntz–Szasz expansion to approximate a firm’s unit cost
function, a function of the prices p1; . . . ; pn of n input factors. The set of basis functions is
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where N0 � 0; 1; 2; . . . and the sequence lðkÞ, k ¼ 1; 2; . . . ; satisfies
P1

k¼1ð1=lðkÞÞ ¼ 1. Barnett and Jonas
(1983) and Barnett et al. (1991a, b) take lðkÞ ¼ 2�k. Barnett and Yue (1988) give conditions for various modes
of convergence of the function and its derivatives. An advantage of this approach is that all basis functions
satisfy the appropriate monotonicity and curvature restrictions for unit cost functions: they are non-
decreasing and concave.

In unpublished work, Geweke and Petrella (2000) also approximate a firm’s unit cost as a function of input
prices p1; . . . ; pn, but use the following set of basis functions:
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where b40. The functions
Qn

i¼1pbii
i satisfying iiob�1, i ¼ 1; . . . ; n, are themselves non-decreasing and concave,

which is convenient for constructing approximations of non-decreasing concave unit cost functions using a
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