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a b s t r a c t

This paper presents the applications of the mine blast algorithm (MBA) and the water cycle algorithm
(WCA), in addition to an improved version of MBA for weight minimization of truss structures including
discrete sizing variables. The MBA mimics the explosion of landmines, while the WCA is inspired by the
observation of water cycle process. An improved version of MBA (IMBA), is also presented. The efficiency
of the three optimization algorithms is tested using classical benchmark discrete truss design problems.
Optimization results show that MBA, IMBA, and WCA offer a good degree of competitiveness against
other state-of-the-art metaheuristic techniques.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last decades, various algorithms have been used for
truss optimization problems which are very popular in the field
of structural optimization. Metaheuristic methods such as genetic
algorithms (GAs), harmony search (HS), and particle swarm opti-
mization (PSO) can efficiently be used in truss design optimization
problems including discrete variables. GAs [1] mimic the processes
of natural selection leading to the survival of the fittest.

For instance, Goldberg and Samtani [2] and Rajeev and Krishna-
moorthy [3] performed sizing optimization of truss structures.
Krishnamoorthy et al. [4] used GAs to optimize space truss struc-
tures in the context of an object-oriented framework. Sivakumar
et al. [5] optimized steel lattice towers. Gero et al. [6] used GAs
for design optimization of 3D steel structures.

Geem et al. [7] developed the HS that reproduces the musical
process of searching for a perfect state of harmony. The harmony
in music is analogous to the optimum design, and the musicians’
improvisation is analogous to local/global search schemes [8].
The HS was successfully applied to truss optimization problems
using discrete and continuous variables [9,10].

The PSO is a population-based algorithm developed by Kennedy
and Eberhart [11]. Li et al. [12] developed an efficient heuristic PSO

(HPSO) for truss structures which outperformed hybrid PSO with
passive congregation (PSOPC) [13] and standard PSO.

The PSOPC was also combined with ant colony optimization
(ACO) and HS by Kaveh and Talatahari [14] to form an efficient
algorithm for truss optimization, called discrete heuristic particle
swarm ant colony optimization (DHPSACO). Comprehensive
reviews for applications of metaheuristic algorithms on skeletal
structures have been presented in the literature [15,16].

Sadollah et al. [17] recently developed the mine blast algorithm
(MBA) which mimics the explosion of landmines. The MBA was
successfully applied to discrete sizing optimization of truss struc-
tures [17]. Furthermore, Eskandar et al. [18] proposed another
metaheuristic algorithm, reproducing the water cycle process.
The water cycle algorithm (WCA) was tested in mathematical
and engineering problems [18]. The MBA and WCA algorithms
were found to be superior over other optimization methods in
terms of convergence rate and quality of optimized designs
[17,18].

In this study, MBA is improved and its operators are enhanced
in terms of efficiency so called improved MBA (IMBA). The relative
performance of the MBA, IMBA and WCA algorithms in discrete
optimization problems of truss structures are investigated in this
research. Furthermore, the efficiency of three algorithms is com-
pared with the results extracted in the literature.

The paper is organized as follows: the formulation of the dis-
crete optimization problem is presented in Section 2. The IMBA
and WCA algorithms and their constraint handling strategies are
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described in detail in Section 3. Section 4 discusses the optimiza-
tion results comparing the developed algorithms with the litera-
ture. Section 5 presents a sensitivity analysis on the effect of
algorithms internal parameters set by the user on the overall con-
vergence behavior; the analysis is carried out for some of the test
problems considered in this study. Finally, Section 6 summarizes
the findings of this study.

2. Discrete structural optimization problems

In discrete sizing optimization problems of truss structures, the
objective usually is to minimize the weight of the structure yet
satisfying nonlinear constraints on element stresses, nodal dis-
placements, critical loads, etc. The optimization problem can be
formulated as follows:

min WðXÞ; X ¼ ½x1; x2; x3; . . . ; xN �; ð1Þ

subject to:

gjðx1; x2; . . . ; xNÞ 6 0 j ¼ 1;2; . . . ; k; ð2Þ

xd 2 Sd ¼ fX1;X2; . . . ;Xpg; ð3Þ

where W(X) is the cost function corresponding to the structural
weight; N and k are the number of design variables and inequality
constraint functions, respectively. Each design variable can be cho-
sen from a discrete set Sd (X1, X2, . . . ,Xp) of P available cross-sections
according to production standards.

3. Applied metaheuristic algorithms

3.1. Improved mine blast algorithm

MBA algorithm is inspired by the process of landmines explo-
sion; shrapnel pieces are thrown away and collide with other
mines in the vicinity of the explosion area causing further explo-
sions. Consider a landmine field where the goal is to clear land-
mines. To clear all the mines, the position of the most explosive
mine must be located. This position corresponds to the optimal
design.

Landmines of different sizes and explosive power are planted
under the ground. Landmine explosions cause many pieces of
shrapnel to be propelled in the air. The casualties of each piece
of shrapnel are evaluated using a cost function (fitness function)
and, then, related to the presence of other landmines with different
explosive power [17].

Often times, pieces of shrapnel collide with other mines and
trigger more mine explosions. This behavior is helpful for finding
the most explosive landmine. MBA algorithm was developed to
find the most explosive landmine (i.e., the landmine with the most
casualties). Table 1 lists nomenclature of MBA parameters.

The MBA algorithm requires an initial population of individuals,
similar to several other metaheuristic methods. The population is

generated from a first shot explosion that produces a number of
individuals (shrapnel pieces). The size of initial population (Npop)
is taken as the number of shrapnel pieces (Ns). The MBA algorithm
initially uses the lower and upper bounds of design variables and,
then, randomly creates the first shot point as follows:

~X0 ¼ L~Bþ frandg � fU~B� L~Bg: ð4Þ

Vector quantities are denoted by over sign. Assume X is the cur-
rent location of a landmine; that is,

~X ¼ ½x1; x2; x3; . . . ; xm�: ð5Þ

Design variables (x1, x2, . . . ,xm) can take real values in continu-
ous optimization problems or they can be selected from a prede-
fined set of discrete values. We assume that the first shot point
(X0) is the best solution (XBest = X0). For performing any optimiza-
tion method, exploration and exploitation are considered as two
critical steps.

The difference between the exploration and exploitation phases
is how they influence the whole search process in finding the opti-
mal solution. Similar to other metaheuristic algorithms, MBA algo-
rithm starts with the exploration phase, which is responsible for
comprehensively exploring the search space.

The exploration factor (l) serves to explore different regions of
design space. This parameter, used in the early iterations of MBA, is
compared with an iteration number index (t): exploration takes
place if l is greater than t. The exploration phase of MBA is gov-
erned by the following equations [17]:

~Xe ¼ ~dt�1

n o
� frandn2g � cos h t ¼ 1;2; . . . ;l; ð6Þ

~Xe ¼ ~XBest þ~Xe t 6 l; ð7Þ

where the dt�1 vector includes the shrapnel distance for exploded
mines with respect to each coordinate direction. Fig. 1 demon-
strates the concept and performance of Eq. (6) from a schematic
point of view.

By taking the square of a normally distributed random number,
better exploration is achieved at the beginning of the optimization
process (see Eq. (6)). The value of l determines the intensity of the
exploration. For example, increasing l makes it possible to explore
more remote regions of design space. The shrapnel angle of inci-
dence, denoted by h in Eq. (6), is given by:

h ¼ k� D k ¼ 0;1;2; . . . ;Ns � 1; ð8Þ

where D = 360/Ns. The value of h ranges from 0 to 360; the resulting
value of cos(h) ranges between �1 and 1. The initial distance of each
piece of shrapnel is d0 = (UB–LB); thus, the best solution is in the
range [LB, UB]. For example, the LB and UB of a four design variable
problem are [�30–20�10–5] and [3020105], respectively. Then,
the initial distance, d0 (dt�1 when t = 1), is the vector of shrapnel
distances [60402010].

Improved MBA (IMBA) modifies the exploitation phase in MBA
and distance reduction of each shrapnel pieces. For the exploitation

Table 1
Nomenclature of MBA (IMBA) parameters.

Parameter Definition Parameter Definition

Rand Uniformly distributed random number between 0 and
1(vector)

XBest�1 Previous best obtained solution (previous improved solution, vector)

Randn Normally distributed random number (vector) D Euclidean distance between the current and previous best solutions
(scalar)

X0 Generated first shot point (initial solution, vector) Xe Location of exploded mine (vector)
d0 Initial distance of shrapnel pieces (vector) l Exploration factor (scalar)
LB Lower bounds of design variables (vector) t Iteration index number (scalar)
UB Upper bounds of design variables (vector) h Shrapnel angle of incidence (scalar)
m Number of design variables (scalar) a Reduction factor (scalar)
XBest Best obtained solution (current improved solution, vector) Ns (Npop) Number of shrapnel pieces (number of population, scalar)
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