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a b s t r a c t

Composite beams that consist of two or more shear deformable layers find widespread applications in a
variety of engineering structures. In the computational modelling of composite beams, the layers can be
stacked together and connected conveniently at the nodes by using multiple-point constraints. However,
this type of modelling does not inherit the kinematic behaviour of the continuous case and thus full-
interaction between the layers cannot be always imposed by applying multiple-point constraints at
the nodes. The work herein shows that in multiple-point constraint applications full composite action
between the shear deformable layers can be recovered by using the variational multiscale approach.
The originality of this study is in the interpretation of the multiple-point constraint application as the
solution in a superfluously extended space because of the weakening in the kinematic constraints. It is
shown that full composite action between the beam layers can be recovered by excluding the identified
fine-scale effect from the solution of the multiple point constraint application. Selected examples illus-
trate the effects of loading and relative layer stiffness on the numerical error as well as modelling options
for fully composite and delaminated beams.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Composite beams that consist of two or more shear deformable
layers stacked together find widespread applications in a variety of
engineering structures. Numerous laminated beam theories have
been proposed hitherto to describe the kinematics and stress states
of composite laminates. The Equivalent Single-Layer models
replace the heterogeneous laminate with a single layer whose stiff-
ness is a weighted average of the layer stiffnesses thorough the
thickness. Such models are the simplest of all laminate theories
and are generally suitable to predict the global response [1]. Alter-
natively, layer-wise theories assume separate displacement fields
within each layer, which provides a kinematically more flexible
representation. As a result, such models are capable of predicting
the strain and stress fields in each layer more accurately. Detailed
discussions and reviews on several layer-wise composite lami-
nated beam theories can be found in [2–4]. These alternative
layer-wise theories vary based on the kinematics assumptions
adopted in each layer and the way that the displacement continu-
ity is enforced between the layers. The elementary theory of

bending of beam based on Euler–Bernoulli kinematics is adoptable
only for thin laminates and materials with high transverse shear
modulus. Therefore, a more improved beam theory of Timoshenko
(i.e., First-Order Shear Deformation Theory) is widely adopted for
composite laminates because of its shear deformability and usabil-
ity for thick laminates. In the present study, the analysis is based
on the assumption that each layer acts as a shear deformable Tim-
oshenko beam. Also, the displacement continuity is enforced
between the layers such that a single transverse deflection
describes the transverse deflection across the thickness (i.e., trans-
verse incompressibility and no vertical separation) and a single
rotation angle describes the rotation across the thickness (i.e., the
composite cross-section remains planar after the deformation). In
this study, as a practical modelling approach, Multiple-Point Con-
straints (MPCs) are used at the nodes to enforce continuity
between the layers. This approach to form composite beams allows
easy modelling, especially when separation between the layers and
delamination needs to be considered at some parts of the beam.
However, when the intention is to provide full interaction between
the layers, the composite beam model that is generated by using
MPCs between the nodes of separate layers does not necessarily
inherit the kinematic behaviour of the continuous case. Gupta
and Ma [5] pointed out this issue in composite beams composed
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of Euler–Bernoulli beam layers and noted that the source of error
in MPC applications of this type can be related to the incompatibil-
ity in the displacement field. Numerical issues in master–slave
type constraint applications of this type were also investigated in
[6,7]. Another type of numerical error occurs in two node beam for-
mulations when the reference axis of the beam-type finite element
does not match with the neutral axis of the cross-section which is
often the case in multi-layer composite beam finite element for-
mulations. Casaux-Ginestet and Ibrahimbegovic [8] identified this
issue also as an incompatibility issue between the axial and bend-
ing deflections and corrected this incompatibility by enriching the
axial displacement field by using bubble functions. In Erkmen et al.
[6], variational multiscale approach was used as a paradigm to
identify both types of numerical issues, i.e. issues in MPC applica-
tions as well as in eccentric axis selections in beam formulations.

The variational multiscale paradigm was introduced by Hughes
and his colleagues to present a theoretical frame-work for the
applications of stabilized techniques such as enrichment with bub-
ble functions to avoid spurious numerical constraints in the finite
element method (e.g., [9,10]) as well as for the applications of reg-
ularization techniques to avoid mesh dependency in localized fail-
ure problems such as strain softening. Some applications of the
multiscale paradigm in complex localized failure problems can
be found in [11–15]. In this study, the variational multiscale
approach is used as a paradigm to identify the numerical error in
MPC applications to form a shear deformable composite beam. It
is shown that the interpolation space in the MPC application can
be treated as a superfluously extended space. By using the varia-
tional multiscale approach, firstly, the incompatibility in the inter-
polations of the displacements, that occurs when enforcing
continuity between the layers, is avoided in the finite element for-
mulation and thus, full composite action between the layers is
recovered by excluding the fine-scale effect from the solution of
the MPC application. Interestingly, the targeted solution is initially
the coarse-scale solution in the problem considered herein. After
application of the MPCs, an equivalent two node composite beam
element is obtained. In such cases when the reference axis of the
element (after MPC application) does not match with the neutral
axis of the cross-section, the element can also be modified to
obtain accurate results as pointed out in [8] and this is done herein
again by using the variational multiscale approach second time in a
standard manner, in which the targeted solution is the fine-scale
solution in this case. The improvements in the accuracy and con-
vergence characteristics are illustrated with numerical examples.
It is also shown that the effects of the incompatibility can be rep-
resented by using extra fictitious elements and springs, which
offers a direct correction technique that is especially useful when
the access to the numerical procedure is limited.

The paper is organised as follows. The kinematics and the weak
form of the equilibrium equations for the composite beam layers
are introduced in Section 2. In Section 3, finite element formula-
tions are developed for composite beam analysis by using MPCs
and alternatively by enforcing full composite action between the
layers as a priori condition. In Section 4, it is shown that by using
the variational multiscale approach the finite element formulation
based on full composite action can be recovered from the formula-
tion based on MPC application. In Section 5, a finite element

formulation that provides exact values at the nodes is obtained
also by using the variational multiscale approach. Numerical
examples are presented in Section 6 and conclusions are drawn
in Section 7.

2. Composite beam kinematics and finite element solution

2.1. Displacements and strains

The composite beam is made up of n layers in which an arbi-
trary layer is referred to as layer i, i.e. i = 1, 2, . . . , n. According to
shear deformable Timoshenko beam kinematics, the deformations
of layer i can be expressed in terms of the axial displacement wi,
transverse displacement vi and the rotation of the cross-section
hi. Positive directions for wi, vi and hi are shown in Fig. 1. The axial
strain ei in layer i can be determined in terms of the axial displace-
ment gradient Dwi, and the curvature due to bending Dhi as

ei ¼ Dwi � yiDhi ð1Þ

in which yi is the coordinate of a point on the cross-section with
respect to the centroid of layer i and D() = d()/dz, where z refers to
the axial coordinate of the beam. The shear strain ci in layer i can
be written as

ci ¼ Dv i � hi ð2Þ

2.2. Weak form of the equilibrium equations

A displacement-based finite element formulation can be devel-
oped by employing the principle of virtual work, i.e.

dP ¼
Xn

i¼1

Z
L

Z
Ai

deiri dAdzþ
Xn

i¼1

Z
L

Z
Ai

dcisi dAdz� dPext ¼ 0;

ð3Þ

where the first integral is the virtual work done due to the bending
and axial deformations of the layers, second integral is the virtual
work done due to the shear deformations of the layers and dPext

is the virtual work done by the external forces. In Eq. (3), ri and
si are the normal and shear stress configurations in layer i, respec-
tively, which in general can be related with the strain configura-
tions ei and ci through elasticity and shear moduli, i.e. ri = Ei ei

and si = Gici. In Eq. (3), Ai is the cross-sectional area, and L is the
span of the beam. Routinely, by substituting Eqs. (1) and (2) into
Eq. (3), the weak form of equilibrium equations can be written asZ

L
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where D is the matrix of the cross-sectional properties, i.e.
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ð5Þ

in which non-diagonal terms are zeros. In Eq. (5), Ii ¼
R

Ai
y2

i dA is the
moment of inertia of the cross-section of layer i with respect to
the bending axis passing through the centroid of layer i and j is

z ,wi

yi ,vi
θ i

Fig. 1. Positive in-plane displacement and coordinate directions of layer i.
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