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a b s t r a c t

An approach is presented to model elastic waveguides of arbitrary cross-section coupled to infinite solid
media. The formulation is based on the scaled boundary-finite element method. The surrounding med-
ium is approximately accounted for by a dashpot boundary condition derived from the acoustic imped-
ances of the infinite medium. It is discussed under which circumstances this approximation leads to
sufficiently accurate results. Computational costs are very low, since the surrounding medium does
not require discretization and the number of degrees of freedom on the cross-section is significantly
reduced by utilizing higher-order spectral elements.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper presents an extension of a previously developed
approach to model wave propagation in elastic waveguides. It
has recently been demonstrated by the authors that a particular
formulation of the scaled boundary finite element method (SBFEM)
[1–3] can be applied to compute dispersion curves and mode
shapes of guided waves [4–7]. The SBFEM is a very general semi-
analytical method that can be utilized in a wide range of applica-
tions to model bounded or unbounded domains in frequency as
well as in time domain [8–11]. Only the boundary of the computa-
tional domain is discretized in the finite element sense, while an
analytical formulation is used to scale the mesh in the interior of
the domain or towards infinity, respectively. Applying this idea
to the comparably simple case of guided waves in infinite struc-
tures leads to the cross-section of the waveguide being discretized,
while harmonic wave propagation is assumed along the waveguide
[4,5]. The resulting formulation for this particular case bears simi-
larities to the thin layer method (TLM) [12,13] as well as to the
semi-analytical finite element (SAFE) method [14,15], which also
require the discretization of the cross-section only but use differ-
ent solution procedures. In the SBFEM, a Hamiltonian eigenvalue
problem is derived for the computation of wavenumbers which
can be solved very efficiently. Moreover, the computational costs
are drastically reduced by utilizing spectral elements of very high
order [4,5,16,17]. In a more recent development, a novel

mode-tracing approach in combination with inverse iteration has
been introduced to solve for the propagating modes only rather
than obtaining the full set of eigenvalues [7].

In order to model a plate structure or a cylindrical waveguide,
the discretization of a single straight line is sufficient to describe
the structure [4,6,18]. Using a two-dimensional discretization, a
cross-section of arbitrary geometry and arbitrary distribution of
material parameters can be modeled [5,16]. It is this flexibility as
well as the computational efficiency which make these finite ele-
ment based techniques (SBFEM and SAFE but also waveguide finite
elements (WFE) [19] and even full three-dimensional models [20])
very popular for the simulation of guided waves.

On the contrary, there exist a group of approaches that are
based on the analytical description of the reflection and transmis-
sion of partial waves at the waveguide’s interfaces. For homoge-
neous isotropic plates and cylinders, analytical solutions have
been found long ago by Lamb [21] as well as Pochhammer [22]
and Chree [23]. The most common formulation to model layered
structures analytically is nowadays known as the global matrix
method [24]. Most analytical approaches require the solution of a
root-finding problem for the wavenumbers, which is typically sup-
ported by a mode-tracing algorithm to improve convergence and
to reduce the likelihood of missing solutions. While this method
is very reliable for simple structures, it can be cumbersome to
obtain the complete set of solutions if the number of layers
becomes large or if the attenuation of the guided waves (due to
either material damping or leakage into a surrounding medium)
has to be considered. In the latter case, all wavenumbers become
complex which complicates the solution of the root-finding
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problem. Recently, sophisticated solution procedures based on
algorithmic differentiation have been presented [25], which highly
improve the reliability of the solution but entail very high compu-
tational costs. Various authors have described the modeling of sim-
ple structures embedded in fluids [26–32], where the interaction
with the surrounding medium is comparably weak. Besides that,
particular analytical models have been derived e.g. for the tran-
sient analysis of waves in cylinders embedded in solid media as
well as waves in porous formations [33,34] and embedded
concrete piles [35].

In the numerical and semi-analytical methods mentioned ear-
lier, material damping can easily be incorporated [14], since the
solution of a complex-valued eigenvalue problem is straightfor-
ward using well-established algorithms. The accurate modeling
of leakage into an infinite surrounding medium on the other hand
is not trivial. In fact, this has for many years been considered a
major drawback of numerical methods in this fields. Probably the
most obvious idea is to discretize a significant domain of the sur-
rounding medium and attach an absorbing region to avoid reflec-
tions from the boundary of the discretized domain to interfere
with the waveguide modes. The absorbing region is assumed to
consist of the same material as the surrounding medium while
an additional material damping – increasing with the distance to
the waveguide’s surface - is introduced, causing waves to vanish
as they propagate towards the boundary of the discretized domain.
It has been demonstrated that absorbing regions can lead to accu-
rate results in transient finite element analyses [36–38] as well as
in the SAFE method [39,40]. However, the computational costs are
very high, since the dimensions of the absorbing region typically
have to be chosen about 10 times larger than the waveguide
[41], leading to large numbers of degrees of freedom even for sim-
ple problems [36]. Moreover, the set of solutions include a high
number of unphysical modes in the absorbing region, the careful
elimination of which requires additional work. As an alternative
to absorbing regions, perfectly matched layers [42,43] or infinite
elements [44,45] can be implemented to model the infinite med-
ium, leading to similar advantages and drawbacks compared to
absorbing regions. Specific problems arising in the application of
PMLs are described in [46]. The surrounding medium can be mod-
eled by a boundary element formulation, decoupled from the
waveguide, to model the radiated sound of guided waves [47].
Recently, it has been demonstrated that a so called 2.5D boundary
element formulation of the surrounding medium can be coupled
with the FEM discretization of the waveguide in order to obtain a
complete description of leaky guided waves [48,49]. Using this
approach, the radiation condition at the waveguide’s surface is sat-
isfied exactly and the interaction of the external wave field with
the waveguide is modeled. However, the coupling leads to a rather
complex non-linear eigenvalue problem, the solution of which is
not straight-forward.

In a recent development presented by the authors [41], an alter-
native approach has been suggested for the cases of embedded
plate structures and cylinders. A simple dashpot boundary condi-
tion [50–53] was proposed to account for the influence of the sur-
rounding medium. The modeling of the waveguide is formulated in
terms of the scaled boundary finite element method. However, the
dashpot boundary condition can be implemented similarly in other
finite element based approaches. The derivation of the boundary
condition is based on the assumption that each component of the
displacement vector on the surface obeys the one-dimensional
Helmholtz equation [54]. As a result, the surrounding medium acts
as a damper with its acoustic impedances being the damping coef-
ficients. Even though this is obviously an approximation, it was
demonstrated that this technique leads to sufficiently accurate
results for many practical applications. The main benefit of this
approach is its simplicity regarding the implementation that leads

to a simple damping term in the eigenvalue problem. No unphys-
ical modes in the surrounding medium have to be considered and
boundary element specific drawbacks like singular elements and
the need for fundamental solutions are avoided. This also allows
a straight-forward implementation of high-order spectral elements
for the discretization of the waveguide’s cross-section. Computa-
tional costs are very low, since the surrounding medium is not dis-
cretized and the solution of only a standard eigenvalue problem is
required at each frequency.

In the present work, this approach is extended to include wave-
guides of arbitrarily shaped cross-section. The dashpot boundary
condition is integrated along the boundary of the discretization,
using standard finite element procedures. For verification, disper-
sion curves for plates and cylinders are computed that can be com-
pared with different approaches. A more complex geometry is then
presented to demonstrate the applicability to structures with arbi-
trary cross-section.

2. Governing equations, boundary conditions and assumptions

Consider a three-dimensional prismatic waveguide in vacuum
as shown in Fig. 1. The cross-section of the waveguide is parallel
to the y–z plane, whereas the system extends towards infinity in
the x direction. In the case of vanishing body forces, the governing
equations of three-dimensional linear elastodynamics in the fre-
quency-domain can be expressed as [3]

LTrþx2qu ¼ 0; ð1Þ

with the differential operator
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The stress amplitudes r are related to the strain amplitudes e
through Hooke’s law with the elasticity matrix D,

r ¼ rx ry rz sxy sxz syz
� �T ¼ De: ð3Þ

The strain amplitudes e follow from the displacement amplitudes as

e ¼ ex ey ez cxy cxz cyz

h iT
¼ Lu: ð4Þ

Fig. 1. Prismatic waveguide.
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