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A spatial model for multivariate lattice data
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Abstract

In this article, we develop Markov random field models for multivariate lattice data. Specific

attention is given to building models that incorporate general forms of the spatial correlations and

cross-correlations between variables at different sites. The methodology is applied to a problem in

environmental equity. Using a Bayesian hierarchical model that is multivariate in form, we examine

the racial distribution of residents of southern Louisiana in relation to the location of sites listed with

the U.S. Environmental Protection Agency’s Toxic Release Inventory.
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1. Introduction

Many spatial problems, particularly those concerning environmental investigations, are
inherently multivariate, in that more than one variable is typically measured at each spatial
location. Multivariate spatial databases are becoming much more prevalent with the
advent of geographic information systems (GIS) that allow users to display many different
spatial data layers.
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Formally, consider a spatial location s and a p-dimensional random variable YðsÞ

associated with each location. Letting s vary over an index set D � Rd generates a
multivariate random field fYðsÞ : s 2 Dg. For geostatistical data, D is a given subset of Rd

and s is assumed to vary continuously throughout D. For lattice data, D is assumed to be a
given finite or countable collection of points. Lattices may be either regular, as on a grid,
or irregular, such as zip codes, census divisions (counties, tracts, block groups, or blocks),
police precincts, game-management units, etc.

Models for multivariate geostatistical data (i.e., data with continuous spatial index) have
been extensively explored (e.g., Wackernagel, 1998; Royle and Berliner, 1999; Ver Hoef
and Cressie, 1993; Ver Hoef et al., 2004; Gelfand et al., 2004), while models for
multivariate lattice data (i.e., data with a countable index set) have received relatively less
attention. Mardia (1988) introduced a multivariate Markov random field (MRF) model
for image processing, and more recently Billheimer et al. (1997), Kim et al. (2001), Pettitt et
al. (2002), Carlin and Banerjee (2003), Gelfand and Vounatsou (2003), and Jin et al.
(2005), have explored these multivariate MRF models and their role in Bayesian
hierarchical modeling.

An integral feature of MRF models involves the specification of neighborhoods. For
each site or lattice point si, a neighborhood is a collection of sites that are spatially close.
Neighboring sites can be defined, for example, as two sites separated by a fixed distance or
as two sites that share a common boundary. Formally, define fNig as the collection of
neighborhoods, where each Ni is a set of indices representing the neighbors of si. Through
this specification of neighborhoods, a MRF model of the spatial-dependence structure in
lattice data can be constructed.

We consider a class of hierarchical models for lattices, either regular or irregular, with n

locations and (potentially) p41 measurements at each location. Letting
YðsiÞ ¼ ðY 1ðsiÞ; . . . ;Y pðsiÞÞ

0
� ðY i1; . . . ;Y ipÞ

0, where Y ik denotes the kth observation made
at the ith lattice point, the data model is generally written as

Y ikjyik�f ðyjyikÞ; i ¼ 1; . . . ; n; k ¼ 1; . . . ; p.

Let h denote the n� p matrix of the process parameters and hv
� vecðh0Þ, which is a np� 1

vector obtained by stacking the columns of h0. Then, the process model for h (or perhaps
some suitable transformation of h) follows a multivariate normal distribution given by

hv
�Nnpðl

v;RÞ,

where lv � vecðl0Þ and l is the n� p matrix whose ði; kÞth element is mik ¼ E½yik�. The
large-scale dependence in h is captured in the mean l, while the small-scale, spatial
dependence is captured in the covariance matrix R.

The covariance matrix R is determined by the neighborhood structure of the process on
the lattice. Previous efforts at defining the nature of this covariance matrix have used
simplified forms that, while computationally efficient, can unduly constrain the
covariances; see references at the end of Section 3.2.1. These models, in general, restrict
the degree of spatial dependence for different variables as well as force the dependence
between different variables at different locations to be symmetric. Royle and Berliner
(1999) and Ver Hoef et al. (2004) suggest flexible multivariate models for geostatistical data
that include asymmetric spatial dependencies. Jin et al. (2005) propose a conditional model
for multivariate lattice data but do not explicitly model the cross-dependencies. In this
article, we propose a more general and flexible model for multivariate lattice data that does
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