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a b s t r a c t

This paper presents an efficient method for vibration reanalysis. The procedure uses block combined
approximations with shifting to simultaneously calculate some eigenpairs of modified structures. The tri-
angular factorizations of shifted stiffness matrices generated in initial vibration analysis are utilized to
calculate the higher modes. The proposed method is based on matrix–matrix operations with Level-3
BLAS and can provide very fast development of approximate solutions of high quality for frequencies
and associated modal shapes of the modified structure. Numerical examples are given to demonstrate
the efficiency of the vibration reanalysis algorithm and the accuracy of the approximate solutions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is well-known that finite element analysis (FEA) is a main part
of various structural design and optimization problems. In general,
structures may be gradually modified during the process of design
or optimization until an optimal solution satisfying the constraints
is reached. Each modification needs a fresh structural analysis, and
the process involves repeated and tremendous calculations.

The reanalysis methods are intended to efficiently evaluate the
structural responses for various changes in design without solving
the full set of modified analysis equations. The solution procedures
usually use the response of the initial structure. Some vibration
(eigenvalue) reanalysis methods have been proposed. One of the
tools for vibration reanalysis is the matrix perturbation method.
Some improved perturbation methods were presented [1,2]. These
methods are efficient in case where the changes in design variables
are small. To further improve the accuracy, some hybrid methods,
such as Padé approximation method [3,4] and the extended
Kirsch’s combined method [5–7] were suggested for vibration
reanalysis. The Padé approximation is used to reconstruct the basis
vectors, the approximate eigenvalue is then computed by using the
Rayleigh quotient. The extended Kirsch’s combined method uses
the first three order perturbation terms of eigenvectors as basis
vectors to compute the approximate eigenvalue of the modified
structure. Based on the Neumann series expansion and epsilon-
algorithm, a vibration reanalysis method was developed [8]. A
procedure using the iteration and inverse iteration methods with

frequency-shift, and epsilon algorithm for vibration reanalysis
was proposed in [9]. Massa et al. put forward a modal reanalysis
method based on homotopy perturbation and projection tech-
niques [10]. The combined approximation (CA) approach for the
vibration reanalysis was developed by Kirsch [11,12]. The CA
method uses binomial series terms as basis vectors in reduced
basis approximations. Originally, the CA method was proposed
for structural static reanalysis [13]. Afterwards, the method had
been extended to vibration reanalysis. It has been shown the CA
approach can provide accurate results for the lower mode shapes
[14]. The basis vectors were improved by using the Gram–Schmidt
orthogonalizations and shifts for linear-dynamic reanalysis [15]. A
general review of reanalysis and sensitivity reanalysis by CA
method was given by Kirsch [16], and the accuracy of the results
and the computational cost for vibration reanalysis have been
reported. The CA method, however, calculates a frequency and
associated mode shape each time, it is less efficient and accurate,
especially for higher order mode shapes. Modified CA methods
for vibration reanalysis were proposed by Zhang et al. [17] and
Mourelatos and Nikolaidis [18]. Based on the matrix inverse power
iteration and the CA method, the modified CA method uses multi-
ple basis vectors to iterate simultaneously, but no shifting strategy
is used and the modified stiffness matrix must be factored for
every new design.

In this paper, a block combined approximation with shifting
(BCAS) is presented for the vibration reanalysis. Compared with
the CA method, the proposed BCAS method is used to simulta-
neously compute several frequencies and associated mode shapes
of the modified structure at a time. In order to improve computa-
tional efficiency, Basic Linear Algebra Subprograms (BLAS) are

http://dx.doi.org/10.1016/j.compstruc.2014.12.006
0045-7949/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: wubs@jlu.edu.cn (B.S. Wu).

Computers and Structures 149 (2015) 72–80

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2014.12.006&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2014.12.006
mailto:wubs@jlu.edu.cn
http://dx.doi.org/10.1016/j.compstruc.2014.12.006
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


utilized. The BLAS are routines that provide standard building
blocks for performing basic vector and matrix operations. They
were first published as a Fortran library in 1979 [19] and are still
used as a building block in higher-level mathematical program-
ming languages and libraries, including LINPACK, LAPACK and so
on. The Level-1 BLAS perform scalar, vector and vector-vector oper-
ations; the Level-2 BLAS perform matrix–vector operations; the
Level-3 BLAS perform matrix–matrix operations and thereby its
higher performance is achieved [20]. Because the BLAS are effi-
cient, portable, and widely available, they are commonly used in
the development of high quality linear algebra software. For vibra-
tion reanalysis, matrix–vector operations in the CA method are
based on the Level-2 BLAS; while the matrix–matrix operations
in the proposed BCAS method are based on the Level-3 BLAS. The
execution efficiency is thus enhanced. For computing the higher
eigenpairs, factorizations of the shifted stiffness matrices gener-
ated during the initial vibration analysis [21–24] are employed.
As a result, factorizations of the modified stiffness matrix and asso-
ciated shifted stiffness matrices are not needed. The proposed
method allows very fast development of approximate solutions
of high quality and low computational cost for frequencies and
associated modal shapes of the modified structure. This will be
demonstrated by three numerical examples of finite element
models.

2. Vibration reanalysis

2.1. Problem formation

Consider an initial design with the n � n stiffness and mass
matrices K0 and M0, respectively. Both of them are sparse and sym-
metric positive definite. The corresponding p lowest eigenpairs can
be computed by solving the following eigenproblem via subspace
iteration or Lanczos algorithms

K0U0 ¼M0U0K0 ð1Þ

where K0 ¼ diagðk01; k02; . . . ; k0pÞ and U0 = [u01, u02, . . ., u0p] repre-
sent the matrices of p eigenvalues and the corresponding eigenvec-
tors of the initial structure, respectively.

It is efficient to use the shifting technique to improve the con-
vergence rate for higher modes in the initial vibration analysis.
Define the generalized eigenproblem with shifting l

ðK0 � lM0ÞU0 ¼M0U0 K
_

ð2Þ

where K
_

¼ K0 � lI. Two eigenproblems in Eqs. (1) and (2) have the
same eigenvectors. By use of subspace iteration with shifting or
shifted Lanczos algorithms, the modes will converge to the ones
having the smallest shifted eigenvalues. For more details, we refer
readers to Refs. [21–24]. As a result, the LDLT factorized form of ini-
tial stiffness matrix K0 and those of a series of shifted stiffness
matrices K0 � l0jM0(j = 1, . . ., m) have already been given from the
initial analysis as follows

K0 ¼ L0D0LT
0 ð3Þ

K0 � l0jM0 ¼ L0jD0jL
T
0j; j ¼ 1; . . . ;m ð4Þ

where L0 and L0j (j = 1, . . ., m) are lower triangular matrices with
unit elements on their diagonals, D0 and D0j (j = 1, . . ., m) are diago-
nal matrices, and m + 1 is number of these triangular factorizations.

Suppose that there are changes in the design, the corresponding
changes in the stiffness and mass matrices are denoted as DK and
DM, respectively. Modified stiffness and mass matrices K and M
can be written as

K ¼ K0 þ DK; M ¼M0 þ DM ð5Þ

The main purpose of vibration reanalysis is to efficiently obtain
the approximate p eigenpairs of the modified structure without
directly solving the complete eigenproblem

ðK0 þ DKÞU ¼MUK ð6Þ

where K ¼ diagðk1; k2; . . . ; kpÞ and U = [u1, u2, . . ., up] are the
matrix of the requested eigenvalues and that of the corresponding
eigenvectors for newly designed structure.

2.2. The CA method and the improved basis vectors

In the CA method [15], the basis vectors for each requested
eigenpair ðkk;ukÞ can be computed by the terms of the binomial
series as follows. Premultiplying Eq. (6) by K�1

0 , we obtain

ðIþ BÞuk ¼ r0k; k ¼ 1; . . . ;p ð7Þ

where

B ¼ K�1
0 DK ð8Þ

r0k ¼ kkK�1
0 Muk ð9Þ

Pre-multiplying Eq. (7) by (I + B)�1 gives

uk ¼ ðIþ BÞ�1r0k ð10Þ

If the spectral radius q(B) of matrix B is less than 1, use of Eq.
(10) leads to the following expansion

uk ¼ ðI� Bþ B2 � � � �Þr0k ð11Þ

Because r0k is unknown, replacing ðkk;ukÞ with ðk0k;u0kÞ in Eq.
(9) results in

r0k � k0kK�1
0 Mu0k ð12Þ

Note that multiplication of a basis vector by a scalar does not
affect the results [15], we can drop k0k and the first basis vector
is given by

r1 ¼ K�1
0 Mu0k ð13Þ

Based on Eq. (13), the basis vectors rB = [r1, r2, . . ., rs] are calcu-
lated by the terms of the binomial series in Eq. (11)

ri ¼ �Bri�1; i ¼ 2; . . . ; s ð14Þ

Note that computation of each basis vector by Eqs. (13) and (14)
involves only forward and backward substitutions, since K0 is
given in the decomposed form of Eq. (3) from the initial analysis.

In summary, for computing the modified eigenpair ðkk;ukÞ; the
CA method [16] involves the following five steps.

1. Compute the modified matrices K = K0 + DK, M = M0 + DM
2. Compute the matrix of basis vectors rB = [r1, r2, . . ., rs] by Eqs.

(13) and (14)
3. Compute the reduced matrices Kr and Mr by

Kr ¼ rT
BKrB; Mr ¼ rT

BMrB ð15Þ

4. Solve the reduced s � s eigenproblem for the first eigenpair
ðek1; y1Þ

Kry1 ¼ ek1Mry1 ð16Þ

where

yT
1 ¼ fy1; y2; . . . ; ysg ð17Þ

5. Approximate the requested mode shape uk by

uk ¼ y1r1 þ y2r2 þ � � � þ ysrs ¼ rBy1 ð18Þ

S.P. Zheng et al. / Computers and Structures 149 (2015) 72–80 73



Download	English	Version:

https://daneshyari.com/en/article/509740

Download	Persian	Version:

https://daneshyari.com/article/509740

Daneshyari.com

https://daneshyari.com/en/article/509740
https://daneshyari.com/article/509740
https://daneshyari.com/

