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The dynamic stiffness method for free vibration analysis of a rotating tapered Rayleigh beam is developed
to investigate its free vibration characteristics. The type of taper considered covers a majority of practical
cross-sections. The effects of centrifugal stiffening, an outboard force, an arbitrary hub radius and impor-
tantly, the rotatory inertia (Rayleigh beam) are included in the analysis. Natural frequencies and mode
shapes of some examples are illustrated by using the developed dynamic stiffness matrix and applying
the Wittrick-Williams algorithm. The theory is validated by using comparative results in the literature.
The effects of slenderness ratio, rotational speed and taper ratio on results are discussed. This is followed
by some concluding remarks.
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1. Introduction

There are numerous engineering applications of rotating beams.
Typical examples include helicopter, compressor and turbine
blades for which the computation of natural frequencies and mode
shapes plays an important role in their design. The cross-sections
of these structures in real life are quite complex, but for simplicity
and also to establish trends and to make some engineering judge-
ments, researchers have often treated them in a relatively simple
manner. For instance, the coupling between various modes of elas-
tic deformations has often been ignored. In particular, the free
vibration behaviour of rotating uniform or tapered beams undergo-
ing only bending deformation (which is generally the most pre-
dominant component in helicopter or wind turbine blades) has
been considered by a substantial number of research workers. Re-
search based on such assumption that the beam deforms only in
bending is no-doubt an oversimplification, but nevertheless, there
is some justification for doing this research, particularly when pre-
dicting the general behaviour of the structure and also to gain
some insights into the problem. The literature on the free vibration
behaviour of rotating beams using uncoupled bending theory is
quite voluminous and surprisingly, is still growing. The authors
have compiled a selective sample of recent publications [1-19] in
chronological order which is appended to this paper so that inter-
ested readers can obtain background information and access useful
cross-references on the subject.
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The development of rotating beam theories is understandably
preceded by the development of non-rotating beam theories and
predictably there are some interesting parallels. The Bernoulli-
Euler beam theory of the eighteenth century [20], the Rayleigh
beam theory of the nineteenth century [21] and the Timoshenko
beam theory of the early twentieth century [22,23] have no-
doubt played very important roles in paving the way for the cor-
responding research into the free vibration behaviour of rotating
beams [1-19]. From a historical perspective, it is probably true
that Timoshenko’s beam theory [22,23] which accounts for the ef-
fects of both shear deformation and rotatory inertia of beam
cross-section has in many ways, overshadowed the relatively un-
known Rayleigh beam theory which was developed by Lord Ray-
leigh [21] many years earlier. The reason for this is obvious
because the latter accounts for the effect of the rotatory inertia
only, whereas the former includes both the effects of the rotatory
inertia as well as the shear deformation of the beam cross-
section. Furthermore, the Rayleigh beam theory [21] for non-rotating
beam has often been overlooked because of its relative simplicity
and ease of application when compared to Timoshenko’s beam
theory. However, for rotating tapered beams, the development of
the Rayleigh beam theory is not so obvious and as it will be shown
later the investigation is quite complex leading to an important
development. This development cannot be ignored or sidestepped
prior to the dynamic stiffness development of rotating tapered
Timoshenko beams which no-doubt will be a tremendously diffi-
cult task. The difficulty arises because the governing differential
equations for flexural displacement and bending rotation are quite
different and very complicated for a tapered Timoshenko beam and
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furthermore, to add to the complexity, they are coupled unlike the
one in the Rayleigh beam theory which principally focuses on just
only one differential equation related to the bending displacement
alone. It appears that the difficult task of developing the dynamic
stiffness theory for a rotating tapered Timoshenko beam can be
significantly facilitated by the corresponding development of a
rotating tapered Rayleigh beam. Thus the purpose of this paper is
to undertake the task of developing the dynamic stiffness matrix
of a rotating tapered Rayleigh beam and then to carry out its free
vibration analysis.

The literature on the free vibration of rotating uniform or ta-
pered beams shows that a majority of the publications rely on clas-
sical methods based on the solution of the governing differential
equations and the subsequent substitution of boundary conditions
which ultimately leads to the frequency equation. However, some
finite element method based solutions [7,12,16] are also available
amongst the application of other methods such as the differential
transform method [10,17,18]. A significant contribution to the liter-
ature in recent years is indeed the application of the dynamic stiff-
ness method (DSM) [2,5,11] which extends the free vibration
analysis of rotating beams to a much wider context. This is because
the DSM has all the important features of the finite element method
(FEM), but importantly, unlike the FEM, it allows an exact free
vibration analysis of structures possible. Thus the DSM has been
successfully applied to rotating uniform Bernoulli-Euler and Timo-
shenko beams [2,5]. These developments have later been extended
to cover rotating tapered Bernoulli-Euler beams [11]. The DSM
development for a rotating tapered Rayleigh beam is therefore, a
natural extension of previous research. This useful extension is far
from being trivial as will be shown later, requiring considerable
theoretical and computational efforts.

Within the above pretext, the dynamic stiffness matrix of a
rotating tapered Rayleigh beam is developed and a free vibration
analysis is carried out. The range of problems considered includes
beams with linearly varying taper in depth and/or width of the
cross-section. In terms of cross-sectional properties this essen-
tially means that the area and the second moment of area of
the beam can vary in two different ways. In the first case when
either the depth or the width (but not both) of the beam varies
linearly along the length, the corresponding variation of the area
of cross-section will be linear whereas the variation of the second
moment of area will be cubic over the length. On the other hand,
for the second case when both the depth and the width vary lin-
early, the variation of the cross-sectional area will follow a square
law whereas the second moment of area variation will be of
fourth power. Using these two types of property variations, a
large number of cross-sections can be constructed [24,25] which
cover a huge number of practical cases. For instance, a linearly
varying tapered beam with thin-walled circular cross-section of
constant thickness falls into the former category whereas the
one with a solid circular cross-section will belong to the latter.

The investigation proceeds as follows. First the governing dif-
ferential equation of motion in free vibration of a rotating tapered
Rayleigh beam with linearly varying taper is derived using Ham-
ilton’s principle. For harmonic oscillation, the differential equa-
tion is solved using Frobenius method of series solution [26].
The expressions for bending displacement, bending rotation,
shear force and bending moment are formulated in explicit alge-
braic form. Next, the boundary conditions are applied to relate
the amplitudes of the nodal forces of the freely vibrating rotating
tapered Rayleigh beam to those of the corresponding displace-
ments via the frequency dependent dynamic stiffness matrix rela-
tionship. Finally the well-established algorithm of Wittrick and
Williams [27] is applied to the resulting dynamic stiffness matrix
to compute the natural frequencies and mode shapes of some
illustrative examples.

2. Theory

In a right-handed Cartesian co-ordinate system, Figs. 1 and 2
show respectively, the two types of taper considered in this paper
for a rotating tapered Rayleigh beam. The Y-axis coincides with
the axis of the beam as shown whereas the Z-axis is parallel but
not necessarily coincidental with the axis of rotation. It is assumed
that the beam is rotating at a constant angular velocity Q with an
arbitrary hub radius ry as shown. Fig. 1 shows a linear variation of
depth and a constant width of the cross-section along the length
whereas Fig. 2 shows a linear variation of both width and depth.
Thus the variations of cross-sectional area and second moment of
area are linear and cubic for the former (Fig. 1) whereas those for
the latter are of second and fourth order variations (Fig. 2),
respectively.

If L is the length, c is the taper ratio, A(y) and I(y) are the area
and second moment of area of the cross-section at a distance y,
then the variations of the area A(y), and the second moment of area
I(y) for both types of tapered beam can be expressed by using the
following formulas.

AY) =41 —c%’)n (1)

1) =1Io(1 - cJL—’)"+2 (2)

where A and I are the area and the second moment of area at the
left-hand end, i.e. the thick-end of the beam, respectively. The inte-
ger n takes the value 1 for the first type (see Fig. 1) and 2 for the sec-
ond type (see Fig. 2) of taper described by Egs. (1) and (2). A large
number of cross-sections can be constructed by using these two
values of n (see Refs. [24,25]), covering many practical cases.
However, the rectangular cross-section is shown in Figs. 1 and 2
only for convenience.
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Fig. 1. A rotating tapered beam with a constant width and linearly varying depth.
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