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a b s t r a c t

This paper presents an effective method for stress constrained topology optimization problems under
load and material uncertainties. Based on the Performance Measure Approach (PMA), the optimization
problem is formulated as to minimize the objective function under a large number of (stress-related)
target performance constraints. In order to overcome the stress singularity phenomenon caused by the
combined stress and reliability constraints, a reduction strategy on target reliability index is proposed
and utilized together with the e-relaxation approach. Meanwhile, an enhanced aggregation method is
employed to aggregate the selected active constraints using a general K–S function, which avoids
expensive computational cost from the large-scale nature of local failure constraints. Several numerical
examples are given to demonstrate the validity of the present method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainties in external loads and material properties may
have considerable impacts on the optimal structural layout. Over
the past decade, reliability based topology optimization (RBTO)
[1,2], which incorporates appropriate uncertainty evaluation
methods into the topology optimization process, has been received
increasing attention in the structural optimization community. In
order to present an integrated optimal layout accounting for
probabilistic or non-probabilistic uncertainties, various methods
of RBTO have been developed. In the work of [3], Kim et al.
performed the RBTO by using evolutionary structural optimization
(ESO) combined with the advanced first order reliability method.
Eom et al. [4] presented a reliability based topology optimization
for 3-D structures based on bi-directional evolutionary structural
optimization (BESO) and a standard response surface method. Silva
et al. [5] adopted the single loop method to eliminate the inner
reliability analysis loop in RBTO. By applying a projection method
with erosion and dilation operators, Wang et al. [6] and Schevenels
et al. [7] proposed a robust topology optimization method to
simulate the effect of uniform and non-uniform manufacturing
errors. Besides, non-probability reliability was studies within

structural topology optimization problems by Luo et al. [8]. A
level-set based shape and topology optimization under geometric
uncertainty was also investigated by Chen and Chen [9]. Moreover,
Lazarov et al. [10] introduced the stochastic collocation methods in
topology optimization for uncertain mechanical systems. In
addition, RBTO has been successfully applied to the conceptual
design of many practical and multidisciplinary problems, including
convection heat transfer systems [11], geometrically nonlinear
structures [12], MEMS mechanisms [13–15], and electro-thermal-
compliant mechanisms [16].

Although the theory of RBTO has been well investigated, the
majority of existing applications focuses on stiffness-maximization
related problems. Only a few studies have addressed the issue of
possible strength failure of material in RBTO problems. For exam-
ple, Patel and Choi [17] solved RBTO problems with stress con-
straints by using a classification based surrogate modelling
approach. In fact, structural strength (or stress) is usually the most
important design criterion from the viewpoint of structural safety.

In terms of stress constrained topology optimization with SIMP
[18] approach, a difficulty is the so-called ‘‘stress singularity
phenomenon’’, which has been studied in both truss [19] and
continuum optimization problems [20]. For a deterministic
optimization problem, this difficulty can be successfully overcome
by the ‘‘e-relaxation’’ [21] or the ‘‘qp relaxation’’ approach [22].
However, as will be shown in this study, incorporating uncertainties
into stress constraints makes the singularity phenomenon even
more challenging, especially for high-reliability requirements. It is
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because the satisfaction of reliability constraints is not only deter-
mined by the actual values of the material stresses, but also the level
of target reliability. As a consequence, the connectivity of the feasi-
ble domain may not be ensured, which would hinder the effective-
ness of gradient based optimal searching. To tackle this difficulty, a
new numerical technique is highly desired.

This paper aims at developing an efficient RBTO scheme for
stress-constrained problems of continua. The considered uncer-
tainties include external load magnitude and material parameters.
By using the performance measure approach, the RBTO problem is
formulated as to minimize the objective function under target
performance constraints on all elements. The main novelty is in
the introduction of the reduction on target reliability index for
eliminating the stress singularity phenomenon in a disconnected
feasible domain. The necessity of such technique is validated
through a classical truss example. Furthermore, in order to effi-
ciently solve this nested optimization problem, an explicit iterative
manner is used to search target performance points. Meanwhile, an
enhanced aggregation method is adopted to handle large-scale
constraints. Several numerical examples are presented to show
the effectiveness of this method.

2. Reliability based stress-constrained problem

2.1. Optimization problem formulation

Using the probabilistic definition of the random uncertainties, a
common formulation of RBTO for the stress-constrained problem is
expressed in finite element form as follows:
>

min
q

V ¼
XN

e¼1

qeVe

s:t: KðqÞu ¼ f
Pr½ feðXÞ ¼ geðre;XÞ � 1 6 0�P Re;target ðe ¼ 1;2; . . . ;NÞ
0 < qmin 6 qe 6 1 ðe ¼ 1;2; . . . ;NÞ

ð1Þ

where design variable vector q = [q1, q2, . . . , qN]T represents the
relative density values of elements, V is the total material volume,
N is the total number of finite elements and Ve represents the ele-
ment volume. K(q)u = f refers to the equilibrium equation, where
K, u and f are the global stiffness matrix, the displacement vector
and the load vector, respectively. X is the vector of random param-
eters of loads and material properties, Pr[�] is the probability of the
random event and Re,target is the specified target probability of
structural reliability. The function fe(X) is known as the limit state

function. re ¼ rxx ryy rzz rxy ryz rzx½ �T denotes the average
stress of the e-th element and ge(re, X) � 1 is the dimensionless
stress constraint function. qmin = 10�2 is set as the lower limit of
the design variables. The global stiffness matrix K(q) is assembled
from the elemental stiffness Ke as according to the rule of the SIMP

approach [23,24] as KðqÞ ¼
PN

e¼1q
p
e Ke. In this study, the penaliza-

tion factor p = 3 is chosen.
It should be noted that the dimensionless stress constraint

ge � 1 6 0 depends on the material failure behavior as well as the
adopted failure criterion. Typically, when a pressure-independent
material (e.g. most of the metallic materials) is used, it can be
expressed from the von Mises failure criterion as:

ge ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðreÞTVðreÞ

q �
x ð2Þ

For some of the nonmetallic materials, such as concrete, rocks
and soils, the Drucker–Prager (D–P) failure criterion may be
considered to identify the failure surface, such that the stress con-
straint function is given by:

ge ¼ ðawre þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðreÞTVðreÞ

q
Þ
�

x ð3Þ

where a and x are material parameters. The vector w and the
material V are constants. For a plane stress state, the following
expressions hold:

w ¼ 1 1 0½ �; V ¼
1 �1=2 0
�1=2 1 0

0 0 3

2
64

3
75 ð4Þ

After transforming the random variables X to a set of
independent standard normal random ones U via the Rosenblatt
transformation [25], the failure surface fe(X) = 0 in the original
space is mapped into the corresponding failure surface fe(U) = 0
in the normalized space (U-space). Reliability constraints in (1) is
conveniently represented in terms of a safety-index as:

b½feðUÞ 6 0�P be;target ðe ¼ 1;2; . . . ;NÞ ð5Þ

where b ¼minU2ffeðUÞ¼0g

ffiffiffiffiffiffiffiffiffiffi
UTU

p� �
is the Hasofer and Lind safety-

index [26], be,target is the target reliability index for the e-th
constraint.

The target reliability index be,target can be approximately
determined using some probability integration methods, such as
the First-Order Reliability Method (FORM) or the Second-Order
Reliability Method (SORM). In FORM, a linear approximation of
the performance function is used and thus be,target = U�1(Re,target),
where U(�) is the standard Gaussian cumulative function. Gener-
ally speaking, the FORM estimate provides adequate accuracy for
most practical circumstances and has been widely for reliability-
based optimization applications. In SORM, the second-order
sensitivities are required and the performance function is
approximated as a quadratic surface to the m-dimensional
random vector U. As suggested by Breitung [27], the SORM-based
probability can be calculated using the theory of asymptotic
approximations and rotationally invariant measure, that is

Pr½ fe 6 0� � 1�Uð�bÞ
Ym�1

l¼1

ð1� bjlÞ�1=2 ¼ WðbÞ ð6Þ

where jl denotes the principal curvatures of the limit state function
at the minimum distance point. Correspondingly, the target
reliability index is calculated by be,target = W�1(Re,target). In addition,
dimension-reduction method (DRM) [28] has also been developed
for the replacement of probability constraints by reliability index
constraints in the reliability-based optimization of nonlinear
systems by e.g. Lee et al. [29]. In this study, only the FORM
approximations are used since the considered stress constraints
functions would be linear or mildly nonlinear with respect to the
uncertain quantities within their main variation bounds.

Based on the Performance Measure Approach (PMA) [30–32],
the design problem (1) can be transformed into its equivalent opti-
mization problem

min
q

V ¼
XN

e¼1

qeVe

s:t: KðqÞu ¼ f
aeðreÞ 6 0 ðe ¼ 1;2; . . . ;NÞ
0 < qmin 6 qe 6 1 ðe ¼ 1;2; . . . ;NÞ

ð7Þ

where ae(re) is the performance measure value corresponding to
the e-th reliability constraint with the prescribed target reliability
index be,target. That is

aeðreÞ ¼max
U

f eðUÞ

s:t: UTU 6 b2
e;target

ð8Þ
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