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a b s t r a c t

A three-dimensional limit analysis model for masonry structures is presented. In the model the masonry
is discretized as an assemblage of rigid blocks, which interact via no-tension contact surfaces with Cou-
lomb friction. A concave contact formulation is adopted and an iterative solution procedure is used to
allow the underlying non-associative friction problem to be solved. Second order cone programming
(SOCP) is used to allow direct modelling of the conic failure surface. The formulation is validated against
various numerical benchmark problems and then successfully applied to masonry walls and a small-scale
masonry building tested experimentally.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The collapse of dry-jointed masonry structures can be analysed
using a rigid block limit analysis modelling strategy. When using
such a strategy, masonry walls can be discretized into a number
of rigid bodies which interact through dry contact interfaces. At
such interfaces failure (or ‘yield’) can be permitted to occur and,
as shown by pioneering workers such as Kooharian [1], Drucker
[2] and Heyman [3], plastic limit analysis can be used to directly
establish the collapse load and corresponding failure mechanism,
without the need to consider loading history. As pointed out by
Livesley [4], in such circumstances mathematical programming
can conveniently be used to obtain a solution, giving the load factor
and failure mechanism at incipient collapse.

The form of the mathematical programming formulation
depends largely on the form of the chosen failure criteria and plas-
tic flow rule. According to the definition given in [5], either ‘convex’
or ‘concave’ formulations can be used, depending on the number of
contact points and the generalized stress components adopted in
order to model the interactions between blocks. Fig. 1, which high-
lights a representative contact interface in a stretcher bonded (or
‘running bond’) wall, shows both concave and convex formula-
tions. (Note that, with such a bonding pattern, the blocks in each

successive course are staggered by half a block; this is assumed
throughout the present study.)

In the case of a convex contact interface formulation (some-
times referred to as a ‘surface’ contact formulation), the normal
and tangential stresses acting at an interface are represented by
stress resultants acting at a single point, generally located at the
centre of the interface; this governs the behaviour of the entire
interface. The stress resultant vector is composed of six compo-
nents, including normal and shear forces and bending and torsional
actions, corresponding in a virtual work sense to the internal
degrees of freedom at the contact interface. The use of this formu-
lation might appear to imply that the two surfaces are in contact at
a single point, and that the two surfaces are slightly convex, but the
bending and torsional components take into account interactions
along the entire surface [5].

In the case of a concave contact interface formulation (some-
times referred to as a ‘point’ contact formulation), it is assumed
that the blocks interact via a number of contact points, usually
located at the corners of the interface, thus appearing to imply that
the two surfaces in contact are slightly concave [5]. The stress
resultants acting on each contact point consist of a normal force
and two shear force components.

When the blocks are assumed to possess infinite compressive
strength, failure generally involves separation, rocking, sliding, or
twisting at the contact interfaces, or combinations of these modes
of deformation. The contact behaviour is governed by the pre-
scribed failure criteria, expressed in terms of static variables as
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well as by flow rules which define the relationship between dis-
placement rates and plastic flow multipliers. Although the use of
convex contacts generally involves a reduced number of contact
relations per block interface, the adoption of a concave contact
formulation normally leads to a simpler limit analysis problem for-
mulation. This is because the use of a convex contact interface
model generally requires several potential failure conditions to
be considered (i.e. to define failure due to pure bending, sliding
and torsion), and, to properly describe potential three-dimensional
responses, also the interaction between these. This leads to nonlin-
earities in the equations governing failure and plastic flow [6]. In
contrast, when a concave formulation is used the relations
involved are much simpler [5,7]. This is because behaviour at con-
tact points is governed by opening and sliding conditions only,
with bending and torsion strength of an entire contact interface
being governed by the combined effect of interactions at all con-
stituent contact points. As a consequence, no specific failure crite-
rion has to be defined to model torsion failure or interaction
effects. In addition, in the case of the concave formulation it will
be shown that the limit analysis problem can be directly cast as
a second order cone programming (SOCP) problem, for which
efficient solution algorithms exist. In contrast, in the case of the
convex formulation, linearization of the various yield conditions
is required, introducing additional complexity. For this reason a
concave contact formulation will be adopted in this paper. (Note
also that, due to their comparative simplicity, concave contact for-
mulations have also been widely embraced by the developers of
‘physics engines’, which can robustly analyse the dynamic response
of large numbers of rigid blocks with contact and friction [8,9].)

Another important aspect in the computational limit analysis of
rigid block assemblages relates to the modelling of plastic flow at
contact interfaces. Either an associative or non-associative ‘flow
rule’ can be assumed. However, an associative flow rule leads to
normal displacement (dilatancy) accompanying sliding along a
frictional contact interface. In contrast, when modelling ‘Coulomb
friction’, zero dilatancy should be assumed, indicating that flow
is non-associative. Generally the response of a real dry frictional
joint involves dilatancy somewhere between these two extreme
cases [10]. In practice the assumed flow rule can have a significant
influence on the computed collapse load factor, and the collapse
load factor computed using an associative friction model will rep-
resent an upper bound on the factor calculated using a non-asso-
ciative friction model [2]. In the interests of safety, it is therefore

generally preferable to adopt a Coulomb friction (i.e. non-associa-
tive) model when calculating the collapse load factor.

If the interactions at contact interfaces are characterised by non-
associative flow, the problem of modelling collapse of a discrete
rigid block system has been shown to lead to a non-symmetric
mixed complementarity problem (MCP), with linear or non-linear
constraints [11]. This problem does not have a unique solution,
and the issue of how best to find suitable solutions for engineering
purposes arises.

Different solution methods specifically for three-dimensional
rigid block assemblages and non-associative frictional contacts
are described in the literature. For example, Baggio and Trovalusci
[12,13] and Orduña and Lourenço [14] have proposed convex con-
tact formulations, using non-linear programming (NLP) to obtain
solutions. Orduña also presented a concave formulation [15], pro-
posing the use of a ‘load path following’ procedure previously
developed and applied in a convex contact formulation to obtain
solutions. These formulations appear capable of providing good
predictions of the collapse load factors and corresponding failure
modes for masonry structures. However, the solution of the MCP
problems by nonlinear programming generally involves long
CPU-times when applied to rigid block assemblages when large
numbers of blocks are involved, whether applied to 2D or 3D prob-
lems [14,15].

As an alternative to directly solving the mixed complementarity
problem (MCP) arising from the assumption of non-associative
behaviour, a simpler procedure based on iterative solution of asso-
ciative problems can alternatively be used, potentially saving sig-
nificant CPU time. This is because when associative friction is
assumed the MCP is symmetric, and can be uncoupled into dual
linear or conic programming problems, either of which can be
solved efficiently using interior point methods [16].

Livesley [5] was amongst the first to develop a computational
model for three-dimensional masonry block problems, adopting a
concave contact formulation involving four contact points per
interface, an associative friction model and using linear program-
ming to obtain solutions. As with his formulation for 2D rigid block
problems [4], he proposed that the apparently unrealistic dilation
which occurs at sliding contacts in the collapse mechanism should
be corrected in a single post-processing step. This can be achieved
by replacing the pyramidal failure surface used for sliding with a
prismatic failure surface, ‘associated’ to the no-dilatancy behaviour
of classical Coulomb sliding friction. Although Livesley was aware
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Fig. 1. (a) Three-dimensional rigid block assemblage; Contact points ‘k’ and static variables for block ‘i’ and interface ‘j’ in: (b) convex (or ‘surface’), and (c) concave (or ‘point’)
contact formulations.
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