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a b s t r a c t

In this paper, we apply the asymptotic expansion method to the mechanical problem of beam equilib-
rium, aiming to derive a new beam model. The asymptotic procedure will lead to a series of mechanical
problems at different order, solved successively. For each order, new transverse (in-plane) deformation
and warping (out of plane) deformation modes are determined, in function of the applied loads and
the limits conditions of the problem. The presented method can be seen as a more simple and efficient
alternative to beam model reduction techniques such as POD or PGD methods. At the end of the asymp-
totic expansion procedure, an enriched kinematic describing the displacement of the beam is obtained,
and will be used for the formulation of an exact beam element by solving analytically the arising new
equilibrium equations. A surprising result of this work, is that even for concentrated forces (Dirac delta
function), we obtain a very good representation of the beam’s deformation with only few additional
degrees of freedom.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The development of higher order beam model that are able to
represent accurately the transversal deformation and the warping
of the cross section, is of great interest for bridge and structural
engineers. These kind of elements have the advantage to contain
in a single beam model, the global and local response of the struc-
ture, instead of multiple models with different types of elements.
Thus, using higher order beam elements will result in a major time
reduction and work simplification for their users. In practice how-
ever, there are very few engineering offices or software editors for
bridge analysis that uses these kind of elements, mainly because
the many necessary aspects for bridge analysis, such as shrinkage,
creep, and skewed curved slab, are not yet completely solved for
these elements, and still the subject of an intense research work.

Many higher order beam element has been developed using dif-
ferent approach [9–17], for example the GBT (generalized beam
theory) theory, developed mainly for thin walled profiles, the VABS
(variational asymptotic beam sectional analysis) method, all giving
very good results in comparison with reference models made with
shell or 3D finite elements. In all the aforementioned methods, the
beam model is derived in two step as in [1,2]. First, a cross section

analysis is performed to determine an appropriate kinematics (or a
basis in which the model is reduced) and then the equilibrium
equations are solved, generally by using one of the available
numerical method (FEM, BEM, etc.).

In a previous work [1,2], a new beam model was presented and
its derivation was performed in two independent steps. The first
one is the construction of an enriched kinematic of the beam, by
using transverse deformation modes obtained from an eigenvalue
analysis of the cross section, and their associated warping modes,
obtained from an iterative equilibrium schemes. Once the kine-
matic is determined, the second step consists in using the principle
of virtual work to obtain the new equilibrium equations associated
to the newly introduced degrees of freedom. These equations were
solved analytically in order to assemble the stiffness matrix of the
element. The advantages of the beam model in [1], in comparison
to other higher order beam elements present in the literature, is its
validity for thick and thin-walled profile and its stiffness matrix
derived from an analytic solution of the equilibrium equations,
which means that there is no need of meshing the beam model.
Nevertheless, the main weakness of the element is that the trans-
verse deformation and warping modes representing the kinematic,
are not specific to the applied loadings, and thus may or may not
have an effect on the beam’s response, which may results only in
adding unnecessary degrees of freedom to the system. From here
originate the idea to determine specific modes for the external
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loading that will have by construction an effect on the beam’s
response. These modes will allow us to obtain the same accurate
results in [1], but with much less additional degrees of freedom.

The asymptotic expansion method (AEM) [3–8,19–21] is one of
the many available mathematical tools to solve general differential
equations, and thus can be used in all fields where these kind of
equations appears. In structural mechanics, the AEM have been
employed to find new solutions for beam or shell structures, or
to find a rigorous justification for some existing models [20,21].
An implicit assumption, used in all beam theories, which is a sep-
aration of the longitudinal variation with the transversal one in the
description of the kinematic, found a justification from the AEM by
assuming a variable separation for the applied external forces. This
assumption is the key element in this work, since unlike the clas-
sical work of Trabucho and Viano [19], it will be exploited for the
higher order modes, to obtain from the general 3D equilibrium
problem of the beam, a series of problems expressed only on the
2D cross section. The AEM can then be seen as a more simple
and efficient alternative to other model reduction techniques such
as POD (Proper Orthogonal Decomposition) and PGD (Proper Gen-
eralized Decomposition), for which a complete 3D pre-analysis of
the beam needs to be performed, whereas only a cross section
pre-analysis is necessary for the AEM to determine the prominent
modes into the beam’s response, under a definite loading.

In Section 2 of this work, we give a summary of the previous
work developed in [1], and then in Section 3 the objective of the
paper is stated. In Section 4, the AEM is applied to a beam element
with a constant cross-section, and at the end of the procedure an
enriched kinematic of the beam in function of external loads is
determined. Finally in Section 5, the principle of virtual work is
used to derive the new equilibrium equations, which will be solved
analytically, as in [1], to obtain the stiffness matrix of the beam.
The numerical results obtained from the developed beam model
will be compared to reference models with shell or brick elements.
The AEM has proven to be a very efficient method to determine the
minimum basis (or kinematic) representing the deformation of the
beam.

1.1. Notations

We set first the notations used in this paper:

– The letters written in bold will designates tensors or vectors.
– The coordinates system attached to the beam will be expressed
by ðx1; x2; x3Þ or ðy1; y2; y3Þ, where the longitudinal component is
represented by x3 or y3 and the transversal component by
ðx1; x2Þ or ðy1; y2Þ. See figure below (Fig. 1).

– The repeated index summation convention will always be used
(unless the contrary is explicitly specified), where the latin let-
ters indices can take the values from 1 to 3 and the greek letters
indices the values 1 and 2:

aibi ¼
X3
i¼1

aibi; aaba ¼
X2
a¼1

aaba

– For the derivation we use the following notations:

a;1 ¼ @1a ¼ @a
@y1

; a;2 ¼ @2a ¼ @a
@y2

; a;a ¼ @aa ¼ @a
@ya

a;ij ¼ @i@ja ¼ @2a
@yi@yj

; aðnÞ ¼ @na
@yn3

2. Summary of previous work

Before developing the asymptotic expansion method for a beam
element, we explain in this section the general philosophy of the
paper. Our goal is to develop a beam element capable of represent-
ing accurately the transverse deformation and the warping of the
cross sections under arbitrary loadings, and thus to obtain with
the beammodel, equivalent results to those of a shell or brick mod-
els. The starting point for the development of a beam element is
not the equilibrium equations, but its kinematic, which is the key
element of every beam model, especially in elasticity. For example
in the well-known Euler–Bernoulli beam theory, the model fails to
give the shear strain because of the choice made on the kinematic,
which is that the rotation of the cross section is equal to the deflec-
tion derivate. Another example concerns the torsion in both
Timoshenko and Euler–Bernoulli beam theory. In those two mod-
els the torsion inertia is equal to the polar inertia, which is wrong
in most cases. Thus, the precision of the model will depends cru-
cially on the adopted kinematic.

In [1], a kinematic was proposed to describe the arbitrary trans-
verse deformation and warping of the cross section. To determine
the transverse deformation modes, the beam cross section is dis-
cretized with 2D triangular elements for which an elementary stiff-
ness matrix is associated. Assembling all of these elementary
matrices, the global stiffness matrix Ks of the section is obtained,
for which a standard eigenvalue analysis is performed:

find ðk;vÞ=K sv ¼ kv ð1Þ
The eigenvectors will form a basis of transverse deformation

modes that will be used to enrich the kinematic, and where an
arbitrary transverse deformation will be decomposed. We note
that by construction of this basis, the modes are linearly indepen-
dent, and that the strain energy U associated to a mode is given by:

U ¼ 1
2
vTK sv ¼ 1

2
kvTv ¼ 1

2
k ð2Þ

From Eq. (2), it can be deduced that the modes with the lowest
eigenvalues mobilizes less energy, and thus have more chances to
occur. From this argument, if we want to determine a basis of n
transverse deformation functions to enrich our kinematic, we will
use then the n eigenvectors with the lowest eigenvalues. But the
main drawback of this procedure, is that the selected modes may
not participate to the beam’s response, depending on the applied
loads and boundary conditions.

For the determination of the warping mode basis in [1], we start
by deriving for each transverse deformation mode, an associated
warping mode of the first order, by making the assumption of uni-
formwarping. To develop the procedure, let us consider the follow-
ing kinematic:

d :¼
w1f

w2f

u

8><
>:

9>=
>; ð3Þ

where w ¼ ðw1ðxÞ;w2ðxÞÞ is a known arbitrary transverse deforma-
tion mode, fðx3Þ its associated degree of freedom, and uðXÞ the lon-
gitudinal displacement that has an unknown form for the moment
and needs to be defined.

Fig. 1. A frame attached to a rectangular beam.
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