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a b s t r a c t

An efficient modified gravitational harmony search algorithm (MGHSA) for topology optimization of
double and triple layer grid structures is presented in the article. In MGHSA, the best agents in each
iteration are identified and each of them is considered as a group leader. Other agents are randomly
located in these groups. To determine the new agents’ positions, only the group leader applies force to
the other agents in the group. Also, a novel member grouping strategy is included in the optimization
algorithm. Optimization results demonstrate the efficiency of the novel MGHSA algorithm and member
grouping strategy developed in this study.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Structural optimization has become one of the most active
branches of structural design in the last decade [1,2]. A usual objec-
tive function is the weight of the structure, while the constraints
vary from displacements and stress constraints, depending on
the considered problem. The optimum design of structures can
be usually defined as one or any combination of three main opti-
mization problems, namely sizing, topology and layout optimiza-
tion. Sizing optimization attempts to find the optimal cross-
sectional areas of elements assuming that element connectivity
and node coordinates are fixed. Topology optimization deals with
element connectivity, i.e. presence or absence of elements between
joints. Layout optimization searches for optimal positions of nodal
coordinates, assuming that topology is fixed [3].

Advantages entailed by topology optimization are well known
since 1904 [4]. In the last decades, different methods have been
proposed for optimization of truss structures, most of which are
based on the concept of the ground structure approach initiated
by Dorn et al. [5]. Combining sizing and topology optimization
leads to formulate very complex optimization problems. Since
the 1960s, there have been many studies based on the ground
structure method [6,7]. For truss topology optimization, Krisch

[8] combined explicit optimality criteria with the grillage method.
Ohsaki and Katoh [9] formulated the optimization problem with
stress constraints as a mixed integer programming (MIP) problem,
solved with the branch-and-bound method. Meta-heuristic opti-
mization methods have been extensively used in truss design
problems. For example, applications of genetic algorithms (GAs)
are reported in [10–12]. Also, Deb and Gulati [13] applied a real-
coded GA with a simulated binary crossover to optimize the sizing,
layout and topology of trusses. Hasançebi and Erbatur [14] devel-
oped a simulated annealing (SA) code for the simultaneous opti-
mum design of truss type structures with respect to size, shape
and topology design variables. Luh and Lin [15] used a two-stage
ant colony optimization (ACO) algorithm to solve combined topol-
ogy and sizing optimization problems: topology was first opti-
mized with a conventional ant system and a continuous version
of the ant colony algorithm was then utilized for sizing optimiza-
tion of truss members. Topping et al. utilized simulated annealing
[16] while the tabu search method was used by Bennage and Dhin-
gra [17]. An effective method for stress constrained topology opti-
mization problems under load and material uncertainties has been
presented by Luo et al. [18], using an enhanced aggregation
method. The two-point gradient based approximation was devel-
oped by Li and Khandelwal [19] in order to improve the perfor-
mance of the method of moving asymptotes (MMA) in topology
optimization problems. Numerical results demonstrated the
validity of the proposed approach which outperformed other
approximation methods.
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Large-scale spatial skeletal structures belong to a special kind of
3D structures widely used in exhibition centers, supermarkets,
sport stadiums, airports, etc., to cover large surfaces without inter-
mediate columns. Space structures are often categorized as grids,
domes and barrel vaults [20]. Double layer grid structures are clas-
sical instances of prefabricated space structures and also the most
popular forms which are frequently used nowadays.

In topology optimization of large-scale skeletal structures with
discrete cross-sectional areas, the performance of meta-heuristic
optimization algorithms can be increased if they are combined
with continuous-based topology optimization methods. For exam-
ple, Mashayekhi et al. [21] applied a two-stage optimization
method for reliability-based topology optimization of double layer
grid structures combining MMA and ACO. Also, Mashayekhi et al.
[22] combined evolutionary structural optimization (ESO) and
ant colony optimization into the ESO-ACO method to minimize
weight of double layer grid structures; artificial ground motion
was used to calculate the structural dynamic response. The same
authors performed reliability-based topology optimization (RBTO)
of double layer grid structures with the SIMP-ACO algorithm [23]
where structural stiffness is optimized with solid isotropic material
with penalization method (SIMP) and the characteristics of the
optimized topology are used to enhance ACO. An efficient opti-
mization method was recently proposed by Mashayekhi et al.
[24] which was a combination of Imperialist Competitive Algo-
rithm (ICA) and Gravitational Search Algorithm (GSA). The pro-
posed hybrid method was based on ICA but the moving of
countries toward their relevant imperialist was done using the
law of gravity of GSA.

This article presents an efficient meta-heuristic algorithm
(MGHSA) for topology optimization of double and triple layer grid
structures. The ground structure approach is utilized. In each iter-
ation, the best agents are identified and each of them is selected as
a group leader. Other agents are randomly located in these groups
so as to have good and bad agents well distributed in each group.
Based on the Newtonian gravity and the laws of motion, only the
group leader applies force to the other agents in its group to deter-
mine their new positions, and correct positions violating side con-
straints with HS-based strategy. The member grouping strategy
developed by Mashayekhi et al. [21–24] is modified in this study
in order to reduce the search space: the achieved profile number
of each member group reduces to one or two digits for elements
subject to low internal forces. Optimization results generated for
double and triple layer grid structures design problems demon-
strate the efficiency of the proposed algorithm and member group-
ing strategy that allowed structural weight to be considerably
reduced with respect to literature.

2. Topology optimization of double and triple layer grid
structures

In topology optimization of double and triple layer grid struc-
tures, the geometry of the structure, support locations and coordi-
nates of nodes are fixed and this structure is assumed as a ground
structure. Presence/absence of bottom nodes for double layer grid
structures or presence/absence of bottom and middle nodes for tri-
ple layer grid structures, and element cross-sectional areas are
selected as design variables. The ground structure is assumed to
be supported at the perimeter nodes of the bottom grid. Therefore,
these supported nodes will not be removed from the ground struc-
ture. In topology optimization of the ground structure, tabulating
of nodes is carried out based on structural symmetry: this leads
to reduce complexity of design space and nodes are removed in
groups of 8, 4 or 1 [21]. For example in the double layer grid struc-
ture shown in Fig. 1, the number of bottom nodes with similar

geometry positions is arranged in Table 1, while in this 6-rows
table, there are 1, 4 or 8 nodes in each row (group). Therefore, in
this structure, six topology variables (NTV = 6) are needed to define
the variability of all node groups. The presence or absence of each
node group is identified by a variable (topology variable) which
takes the value of 1 and 0 for the two cases, respectively. In other
words, assigning a zero value to the ith topology variable means
that the ith node group, and all of the elements connected to those
nodes should be removed from the ground structure.

In topology optimization problem, the number of design vari-
ables (NDV) is the summation of the number of compressive and
tensile element types and the number of topology variables
(NTV) [21]. For example, it is assumed that during the topology
optimization procedure of the ground structure shown in Fig. 1,
the vector of design variables of a structure is obtained as depicted
in Fig. 2. In this figure, it is assumed that the number of tensile and
compressive element types is considered as 2 and 4, respectively.
Since the 1st and the 4th topology variables have zero values, all
of the nodes in the 1st and the 4th rows in Table 1 are deleted from
the ground structure. The obtained topology is shown in Fig. 3. The
remaining 6 design variables are used to assign the cross-sectional
area to the members in any group (type) by referring to a table of
available profiles. In other words, the 3rd, the 6th, the 5th and the
2nd profile are allocated to all the compression members of the
first through the fourth group (type), respectively, and the 4th
and the 3st profile are allocated to all the tension members of
the first and the second group (type), respectively.

Discrete variables are used for determining the suitable cross-
sectional area of the structural members. These variables are
selected from pipe sections with specified thickness and outer
diameter. In order to design a practical structure, the existence of
nodes in top grid is not considered as a variable. This implies that
the load bearing areas of top layer joints remain unchanged [21].

In topology optimization problems of double and triple layer
grid structures, the objective is to minimize the weight of the
structure (W) under constraints on element stress (gr), slenderness
ratio (gk) and displacement (gd) [21]. Design variables can be
selected from a discrete set of values. The optimization problem
is formulated as follows:

Find : A ¼ ½J1; J2; . . . ; JNTV ; a1; a2; . . . ; aNMG�T
Ji 2 ½0;1�; i ¼ 1;2; . . . ;NTV

ak 2 ~A; k ¼ 1;2; . . . ;NMG

to minimize : W ¼ qe
XNMG

k¼1

ak
XNk

i¼1

li

subject to : gr; gk; gd 6 0

ð1Þ

where NMG is the number of member groups, Ji is the ith topology
variable, Nk is the number of members in the kth member group, ak
is the discrete cross-sectional area of the kth member group which

is selected from steel pipes in a given profile list (~A), qe is the mate-
rial density and li is the length of the ith element.

The constrained optimization problem can be converted into an
unconstrained one where the modified objective function ðWÞmust
be minimized [25]. In the present study, the W function is defined
as in [21]:

WðAÞ ¼ WðAÞð1þ CðAÞÞ2 ð2Þ
in which

CðAÞ ¼
Xne
i¼1

ðgr;iðAÞ þ gk;iðAÞÞ þ
Xnj
j¼1

gd;iðAÞ ð3Þ

where C is the penalty function, ne is the number of elements and nj is
the number of joints. It is noted that these penalty terms are
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