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a b s t r a c t

This paper presents the 2D and 3D numerical analysis of pullout tests on steel anchorages in concrete
blocks using standard and mixed finite elements. A novel (stabilized) mixed formulation in the variables
of total strain e and displacements u is introduced to overcome the intrinsic deficiencies of the standard
displacement-based one in the context of localization of strains, such as mesh dependency. The quasi-
brittle behavior of concrete is described through an elastoplastic constitutive law with a local Rankine
yielding criterion. The proposed formulation is shown to be a reliable and accurate tool, sensitive to
the physical parameters of the pullout tests, but objective with respect to the adopted FE mesh.
Furthermore, the mixed e=u finite element is able to capture the correct failure mechanism with rela-
tively coarse discretizations. At the same time, the spurious behavior of the standard formulation is
not alleviated by mesh-refinement.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Concrete is widely used in the context of civil structures, and
yet, it is a rather complex material. Having an inherent internal
heterogeneity and reacting to environmental conditions makes
the post-peak non-linear behavior and the subsequent failure very
difficult to predict, if not impossible. Then, it is clear the key role of
experimental tests in the context of concrete structures reliability.
Within the extensive literature in the field, one can recall L-shaped
panels tests by Winkler et al. [1], wedge splitting by Trunk [2], sin-
gle edge notched beams by Guinea et al. [3], Gálvez et al. [4], mixed
mode fracture tests by Nooru-Mohamed [5], Ballatore et al. [6] and
indentation tests by Berenbaum and Brodie [7].

In this work, the pullout test is addressed, being one of the most
interesting experimental techniques to evaluate the strength of
concrete and the overall behavior of embedded anchorages. First
accounts of the pullout test come from Abrams [8] and Slater
et al. [9]. Later, Elfgren et al. [10] and Peier [11] introduced numer-
ical modeling as a validation of the experimental procedure. While
the laboratory setup can be easily reproduced, the test outcomes
are strictly dependent on the choice of various parameters as the
mechanical properties of the employed materials, the size of spec-
imens and the anchorage embed depth. The influential works of
Eligehausen and Sawade [12], Bažant et al. [13], Ožbolt et al.
[14], Karihaloo [15] emphasized the structural size effect on the
pullout test and its influence on the energy dissipated in the

cracking process. Most recent advances are related to the possibil-
ity of testing the coupling between FRP composites and concrete
[16,17]. Hereafter, the attention will be focused on the reported
experiments from Dejori [18], Thenier and Hofstetter [19] for the
2D case, whereas the work by Gasser and Holzapfel [20], Areias
and Belytschko [21] will be considered for the 3D case.

The methodology used to assess physical properties of speci-
mens during a test is as critical as the details that characterize
the particular experiment. Slight changes in the application of a
load or in the supporting system can affect severely the results
without a clear explanation. Permutating over multiple experi-
mental settings can help to understand better the numerous vari-
ables involved, but, in reality, not all combinations are possible,
due to limitations in controlling the test bench as well as time
and cost restrictions. Hence, it is in this framework that numerical
simulations play a fundamental role for the prediction and the pos-
sible improvement of experiments.

Recently, the authors presented a general purpose finite ele-
ment technology for compressible and incompressible plasticity
[22], which has successfully tackled geotechnical problems [23].
The proposed mixed strain–displacement (e=u) formulation has
been applied to local constitutive models in plasticity, in the
framework of the smeared crack approach [24]. In problems
involving strain-localization, standard finite elements present
numerous limitations, being affected by spurious mesh-biased
dependence and stress locking. In such cases, the sensibility
required to evaluate the change of results with respect to diverse
boundary conditions can be overshadowed by the lack of precision
in the inelastic range of classical displacement-based finite
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elements. On the contrary, the mixed e=u finite element formula-
tion is capable to overcome these issues, predicting effectively
the peak load, the failure mechanism and the localization bands.
The method is also free from any mesh dependence and it does
not require any additional tracking technique. This is a substantial
clinching feat, as, leaving out theoretical qualms and from the fac-
tual point of view, local crack tracking procedures are very difficult
to implement in 3D and global methods cannot deal with crack
branching.

Taking advantage of its reliability, the proposed method is
applied in this work to the pullout problem, using 2D and 3D ele-
ments with linear interpolations of both the displacement and
total strain fields. In previous works [25–27], the formulation has
been used in the context of isotropic damage models. In this work,
though, a plasticity model based on the Rankine failure criterion is
used, similarly to those used in Refs. [20,28–31]. Furthermore,
plasticity with strain softening has been proved to be able to repro-
duce structural size-effect in a wide range of scales and, particu-
larly, in engineering-size problems [25].

The objective of the paper is proving that the use of an
appropriate finite element technology is crucial for the study
of the experimental setting and for the assessment of the results,
even in the case of a very well known application, as the pullout
test is. The outline of the paper is as follows. First, the
displacement-based and the mixed strain–displacement formula-
tions are introduced. Then, the plasticity constitutive model is
presented and the Rankine yielding criterion is extended in the
case of multi-axial loading condition. A regularization of the sin-
gular points, useful to avoid indetermination issues in the return
mapping algorithm, is shown. Finally, numerical simulations of
2D and 3D pullout tests are presented: standard and mixed finite
element analyses are compared, demonstrating both the sensibil-
ity to changes on the boundary conditions and the replication of
experiments. The results show that the mixed e=u finite element
provides reliable and high quality outcomes when compared to
the standard irreducible formulation.

2. Governing equations

A solid body B occupying the space domain X is described by
the position X of each point with respect to a system of coordinates
x; y; z.

On the one hand, every point of such domain has a displace-
ment u and a total strain e. Both displacements and strains are con-
sidered small. The compatibility condition relates both fields as:

�eþ $su ¼ 0 ð1Þ
where $sð�Þ is used to denote the symmetric gradient operator. On
the other hand, the equilibrium of forces in (quasi-)static conditions
states that:

$ � rþ f ¼ 0 ð2Þ
where r is the Cauchy stress tensor and f are the external forces
applied to the body. The symbol $ � ð�Þ refers to the divergence oper-
ator. The total strain e is decomposed additively in the elastic ee and
the plastic ep parts. The link between Cauchy’s stress and the total
strain is given by the constitutive law:

r ¼ C : ee ¼ C : e� ep
� � ð3Þ

where C is the fourth order elastic constitutive tensor. Recalling
Eqs. (1) and (2), the problem reads:

� eþ $su ¼ 0
$ � C : e� ep

� �� �þ f ¼ 0
ð4Þ

This set of equations represents the strong form for the mixed
problem involving the unknown fields of displacements u and total
strains e in the case of plasticity. In order to obtain a symmetric
system, the first equation is pre-multiplied by the elastic constitu-
tive tensor C:

� C : eþ C : $su ¼ 0
$ � C : e� ep

� �� �þ f ¼ 0
ð5Þ

The irreducible problem, in terms of the displacement field u
only, is recovered substituting the first equation into the second,
to yield:

$ � C : $su� ep
� �� �þ f ¼ 0 ð6Þ

With proper conditions on the boundary @X and evolution laws
for the plastic strain field [32], both irreducible and mixed formu-
lations provide a well posed boundary value problem.

3. Irreducible finite elements

Recalling the strong form in Eq. (6), the corresponding weak
problem can be written as:Z
X
v � $ � C : $su� ep

� �� �� �þ Z
X
v � f ¼ 0 8v 2 V ð7Þ

where V is the space of test functions which are square integrable.
Integrating by parts, the forcing terms can be extracted as:Z
X
$sv : C : $su� ep

� � ¼ F vð Þ ð8Þ

where the boundary terms accounting for body forces f on X and
tractions t on the boundary @X are collected in the term

F vð Þ ¼
Z
X
v � f þ

Z
@X
v � t ð9Þ

The discretized version of Eq. (8) is obtained by selecting a finite
set of interpolation functions for the displacement field as well as
the test function as:

u ! uh ¼
Xnpts
i¼1

v ðiÞ
h uðiÞ

h vh 2 Vh ð10Þ

such that the discrete functional space Vh is a subset of the contin-

uous version V#H1ðXÞdim. From Eq. (8), the final discrete system of
equations reads:Z
X
$svh : C : $suh � ep

� � ¼ F vhð Þ ð11Þ

For the standard finite element interpolation, linear triangles P1
and quadrilateral Q1 are considered in this work.

4. Mixed e–u finite elements

4.1. Galerkin method

The weak form of the set of equations in (5) is:

�
Z
X
c : C : eþ

Z
X
c : C : $su ¼ 0 8c 2 GZ

X
v � $ � rð Þ þ

Z
X
v � f ¼ 0 8v 2 V

ð12Þ

In this case, besides the functional spaceV for the test functions
v of the displacement field u, it is required to introduce the set of
test function tensors for the strain e pertaining to G. Integrating by
parts the second equation, it can be written:
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