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a b s t r a c t

In the conventional displacement-based finite element analysis of composite beams that consist of two
Euler–Bernoulli beams juxtaposed with a deformable shear connection, the coupling of the transverse
and longitudinal displacement fields may cause oscillations in interlayer slip field and reduction in opti-
mal convergence rate, known as slip locking. This locking phenomenon is typical of multi-field problems
of this type, and is known to produce erroneous results for the displacement based finite element analysis
of composite beams based on cubic transverse and linear longitudinal interpolation fields. In this study, a
very simple and novel procedure is introduced to eliminate the parasitic slip in the finite element analysis
of composite beams. A systematic solution of the differential equations of equilibrium is also provided,
and an exact element is developed in the paper. Numerical results presented illustrate the accuracy
gained based on the proposed modification to the basic finite element formulation. Solutions based on
the exact element provide benchmark results for the performance of the proposed formulation.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Composite beams that consist of two or more different compo-
nents juxtaposed with a shear connection find widespread applica-
tions, especially in the floor system and bridge design. Examples
may include steel–concrete composite beams where concrete pro-
vides the compressive strength, fire resistance, and floor surface,
while the steel possesses high tensile strength and has the advan-
tage of rapid erection, and the layered wood systems commonly
used in housing for floors, walls and roof structures, where com-
posite action provides a stiffer and stronger structural system. In
many civil engineering applications involving steel–concrete
beams connected with shear studs or layered wood systems con-
nected with nails, the connection is not infinitely rigid, thus per-
mitting relative slip between the components while preserving
the contact. The interlayer slip between the two components sig-
nificantly affects the behavior of the composite beam and a math-
ematical model that considers the interlayer slip was initially
introduced by Newmark et al. [1], in which two Euler–Bernoulli
beams are connected by assuming that vertical separation does
not occur between the components. There is a vast literature on
the improvement of models for composite beam analysis, e.g.
[2–6]. The scope of the current study is limited to Newmark’s
model [1], which is commonly adopted in structural engineering
applications. Analytical solution methods based on Newmark’s
model can be found in Girhammar and Gopu [7], Faella et al. [8]

and Girhammar and Pan [9]. Displacement-based beam-column
type finite element formulations were developed by Arizumi
et al. [10], and Daniels and Crisinel [11]. However, for stiff inter-
layer connections, displacement-based finite element formulations
may suffer from the so-called slip-locking phenomenon, which was
initially investigated by Dall’Asta and Zona [12,13]. The consistent
interpolation strategy was adopted for composite beam analysis by
Dall’Asta and Zona [12,13] to develop locking-free displacement-
based finite element formulations in which additional internal
nodes have to be introduced to match the interpolation functions
of the axial and transverse displacement fields.

Assumed strain formulations and the kinematic interpolation
strategy that alleviate slip-locking behavior for stiff connections
were introduced by Erkmen and Bradford [14,15]. A meshfree for-
mulation based on the matching field strategy that completely
eliminates slip-locking was recently developed in [16]. A conve-
nient practice in the modeling of composite beams for the cases
with infinitely rigid connections is to connect the two conventional
beam type finite element components by using a rigid bar to con-
nect the end nodes of the two components or use master–slave
type kinematic constraints to express the nodal degrees-of-free-
dom of one of the members in terms of the other. Eccentricity re-
lated numerical issues in that case as reported by Gupta and Ma
[17] are corrected by using fictitious members and springs in Erk-
men et al. [18,19]

The novel idea in this paper is to use consistent interpolation for
the slip field which introduces additional parameters, however
eliminate those parameters by imposing an explicit constraint
condition. As a result of this procedure, slip oscillations do not
occur and thus the element is suitable to be used for the analysis
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of composite beams with stiff connections. The idea of imposing
explicit constraints has been used for shear deformable beam
and plate theories in the past, e.g. [20–23]. The mechanism for
shear locking in Timoshenko beams and slip locking in composite
beams is similar as discussed in [14]. The element requires no
additional internal nodes or static condensation procedure and
yet, completely eliminates parasitic slip field. A systematic solution
of the differential equations of equilibrium is also provided, and an
exact element is developed in the paper. Solutions based on the ex-
act element provide benchmark results for the performance of the
proposed formulation. Examples are presented to illustrate the
performance and the numerical characteristics of the simple and
novel finite element developed herein.

2. Composite beam-column analysis

2.1. Kinematic model

The composite beam-column is composed of a top and a bottom
Euler–Bernoulli beam which are referred to as layers 1 and 2. The
composite cross-section is thus represented as A = A1 + A2, where
A1 and A2 are the cross-sections of layers 1 and 2, respectively as
shown in Fig. 1(a).

2.2. Strains

According to Newmark’s model, the strain diagram is deter-
mined uniquely by the curvature of the vertical deflection v 00 with
respect to an arbitrary reference axis and the derivatives of the lon-
gitudinal displacements at the centroid of each layer w01 and w02 as
shown in Fig. 1. Slip displacement between the two layers C can be
obtained in terms of the slope of the vertical deflection v0 and the
longitudinal displacements at the centroids of the layers w1 and
w2.

e1 ¼ w01 � ðy� h1Þv 00; ð1Þ
e2 ¼ w02 � ðyþ h2Þv 00; ð2Þ
C ¼ w2 �w1 þ hv 0; ð3Þ

where prime (0) denotes the derivative with respect to longitudinal
coordinate z.

3. Basic finite element formulation

3.1. Displacement based finite element formulation

A displacement based finite element formulation can be devel-
oped by employing the total potential energy functional, i.e.
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where the first and second integrals are the bending energies of the
two layers, the third integral is due to the elastic deformations of
the shear connection in which q is the stiffness of the shear connec-
tion (force/length3) which is the shear stresses in longitudinal direc-
tion for unit slip, b is the width of the effective intersection surface
between the two layers and Pext is the work done by external forces.
In a displacement-based finite element formulation the longitudinal
displacement fields w1, w2 and the derivative of the vertical dis-
placement field v0 can be expressed in terms of the selected interpo-
lation functions as
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where M(z) and N(z) are the vectors of interpolation functions for
the longitudinal and the vertical displacement fields, respectively.
In Eq. (5), B(z) is the discrete slip matrix and U is the vector of nodal
displacements composed of the vectors of nodal longitudinal dis-
placements at the centroids of both layers wN1, wN2 and the vertical
displacement vN, i.e.

UT ¼ wT
N1 wT

N2 vT
N

� �
: ð6Þ

By substituting Eqs. 1, 2, 3, (5) into Eq. (4), the total potential energy
functional can be written as

P ¼ 1
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in which Bd(z) = B0(z), F is the energy equivalent nodal external load
vector,
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and
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where I1 and I2 are the moments of inertia of the layers with respect
to their horizontal principal axes passing through the centroids of
each cross-section and h is the distance between these centroids

Fig. 1. Composite beam; (a) cross-section, (b) displacements, (c) strains.
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