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a b s t r a c t

This paper presents a simple approach to evaluate origin intensity factors of the singular boundary
method (SBM), a recent strong-form boundary discretization numerical technique. The SBM overcomes
the perplexing ‘fictitious boundary issue’ associated with the method of fundamental solutions (MFS)
and in it the source points and collocation points coincide on the real physical boundary. By analogy with
the boundary element method (BEM), we develop a desingularization strategy for the direct computation
of singular kernels in the SBM, without losing the merits of being truly meshless, integration-free, and
easy-to-implement. In addition, an efficient non-linear co-ordinate transformation is employed to tackle
the near singularities of the kernel functions, when the calculation point is close to, but not on, the
boundary. It is shown that the proposed SBM fully inherits the merits of the BEM and MFS. The advan-
tages, disadvantages and potential applications of the proposed method, as compared with the MFS
and the BEM, are also examined and discussed in detail.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The method of fundamental solutions (MFS) belongs to the fam-
ily of meshless boundary collocation methods that present remark-
able results with a small computational effort [1–3]. The MFS is
easy-to-implement and computationally efficient and thus a com-
petitive alternative for the solution of boundary value problems.
However, the traditional MFS requires a fictitious boundary
outside the problem domain in order to avoid singularities of the
fundamental solutions. Despite many years of research, the deter-
mination of the fictitious boundary is largely based on experience
and presents the most serious drawback in the MFS applications to
real-world problems [4–6].

In recent decades, considerable efforts have been made to mit-
igate this difficulty associated with the MFS, so that the source
points can directly be placed on the real boundary. Chen and Tana-
ka [7] employed a nonsingular general solution instead of the sin-
gular fundamental solutions for two-dimensional (2D) Laplace and
Helmholtz problems. Yong and his co-workers [8] applied a desin-
gularization method of subtracting and adding-back technique for
2D potential problems. Sarler [9] proposed a similar method to
determine the diagonal coefficients of the weakly and strong sin-
gular kernels by the integration of the fundamental solution on line
segments and the inverse interpolation technique, respectively. Liu
[10] applied successfully a desingularization strategy, based on the

boundary element formulation, for 2D Laplace problems. All the
aforementioned methods have the common feature of evaluating
the singular kernel functions in an indirect numerical methodol-
ogy. The merits and drawbacks of the above-mentioned methods
over the traditional MFS for solving elliptic boundary value prob-
lems are thoroughly discussed in Ref. [11].

This paper focuses on a recent technique, called the singular
boundary method (SBM) [11–14]. The key idea in this method is
to introduce the concept of the origin intensity factor to isolate
the singularity of the fundamental solutions, and then to develop
an inverse interpolation technique to determine the origin inten-
sity factors from both the fundamental solution and its derivatives.
This method is accurate and stable but amounts to solving the
problems twice and thus the total computational cost is higher
than the cost of other meshless boundary collocation methods,
such as, the MFS.

The aim of the present paper is to present an alternative strat-
egy for the direct evaluation of origin intensity factors in the SBM
formulation. In the boundary element community, a significant
contribution to the direct numerical evaluation of Cauchy principal
value (CPV) integrals was proposed by Guiggiani and his collabora-
tors [15–19]. It was shown that the general CPV integrals can be
easily reduced to regular ones with simple manipulations, and
the procedure can be applied whatever the type and order of the
shape functions involved. Inspired by this work, we propose an im-
proved SBM formulation based on the fact that the SBM and the
indirect BEM have an underlying relationship. By analogy with
the BEM, we develop a desingularization strategy for the direct
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efficient computation of singular kernels in the SBM without losing
its meshless, integration-free, and easy-to-implement properties. It
is important to stress that the SBM is still truly meshless and is dif-
ferent from the BEM in that it does not require numerical
integration.

In addition, the SBM suffers from the so-called boundary layer
effect [20–22] which results in poor approximations to the solution
at points close to the boundary of the domain of the problem under
consideration. In such cases, the kernel functions are ‘‘nearly’’ sin-
gular in the sense that the calculation point is close to, but not on,
the boundary. The numerical evaluation of nearly singular inte-
grals has already been investigated and researched in the BEM
community [20,21,23–26]. However, as shown in Ref. [27], almost
all these methods are limited to nearly singular integrals defined
on low-order geometry elements. In a more recent study [14,28],
the authors proposed an efficient non-linear coordinate transfor-
mation, based on sinh function [20], for the calculation of nearly
singular integrals over curved geometry elements. In this study,
this transformation is introduced for evaluating the nearly singular
terms, which arise in the solution of 2D elasticity problems, using
the proposed SBM formulation.

A brief outline of the rest of this paper is as follows. In Section 2,
we describe the traditional SBM formulation for the solution of 2D
elasticity problems. The proposed SBM formulation and its imple-
mentation are presented in Section 3. Section 4 introduces a non-
linear transformation to remove the near singularities of the
fundamental solutions. In Section 5, the accuracy and stability of
the proposed SBM schemes are tested to three benchmark elastic-
ity problems in which the SBM solutions are compared with the
MFS and the BEM. Finally, some conclusions and remarks are pro-
vided in Section 6.

2. Traditional SBM formulation for 2D elasticity problems

In the absence of body forces, the equilibrium equations for the
plane strain elastostatic problem, also known as the Navier equa-
tions, with respect to the displacements ui(x), i = 1, 2, can be stated
as

2
1� l

1� 2l

� �
@2u1ðxÞ
@x2

1

þ @
2u1ðxÞ
@x2

2

þ 1
1� 2l

� �
@2u2ðxÞ
@x1@x2

¼ 0; x 2 X;

ð1Þ

1
1� 2l

� �
@2u1ðxÞ
@x1@x2

þ @
2u2ðxÞ
@x2

1

þ 2
1� l

1� 2l

� �
@2u2ðxÞ
@x2

2

¼ 0; x 2 X;

ð2Þ

subject to the boundary conditions

uiðxÞ ¼ �ui; x 2 CuðDirichlet boundary conditionsÞ; ð3Þ

tiðxÞ ¼ �ti; x 2 CtðNeumann boundary conditionsÞ ð4Þ

where l is Poisson’s ratio, ti(x) denotes the component of the
boundary traction in the ith coordinate direction, Cu and Ct com-
prise the whole boundary of the domain X as well as the exterior
domain Xe as shown in Fig. 1, �ui and �ti represent the prescribed dis-
placements and tractions, respectively.

The strains eij(x), i, j = 1, 2, are related to the displacement gradi-
ents by the kinematic relations

eijðxÞ ¼
1
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and the stresses rij(x), i, j, = 1, 2, are related to the strains through
Hooke’s law by

rijðxÞ ¼ 2G eijðxÞ þ
l

1� 2l
ekkðxÞdij

� �
; ð6Þ

where dij is the Kronecker delta and G is the shear modulus. The cus-
tomary standard Cartesian notation for summation over repeated
subscripts is used.

The boundary tractions ti(x), i = 1, 2, are defined in terms of the
stresses as

tiðxÞ ¼ rijðxÞnjðxÞ; x 2 C; ð7Þ

where nj(x) is the direction cosine of the unit outward normal vec-
tor at the boundary point x.

Employing indicial notation for the coordinates of the points x
and y, i.e., x1, x2 and y1, y2, respectively, the Kelvin fundamental
solutions of the systems (1) and (2) can be expressed as [29]

Uijðy; xÞ ¼ �
1
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; ði; j ¼ 1;2Þ; ð8Þ

where r is the Euclidean distance between x and y, r,i = (yi � xi)/r de-
notes the derivatives of the distance r with respect to yi.

The fundamental solution of the tractions can be obtained by
first calculating the fundamental solutions of strains and then
applying Hooke’s law

Tijðy; xÞ ¼ �
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where r,n = r,ini(y) represents the derivative of r in the direction of
the outward normal at the point y. Similarly, the fundamental solu-
tion of the stress is given as follows

Dijkðy; xÞ ¼
1
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In the traditional MFS [30–32], the displacements and tractions
can be approximated by a linear combination of fundamental solu-
tions with respect to different source points x as follows:
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where i, j = 1, 2, fan
j g

N
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represent the unknown coefficients,
ym 2 �X ¼ X

S
@X is the mth collocation point, xn stands for the nth

source point, which lies outside �X (see Fig. 1(a) and (b)). The MFS
requires a fictitious boundary outside the problem domain for the
placement of the source points fangN

n¼1 to avoid the singularity of
the fundamental solutions. However, despite many years of great
effort, the placement of the distance between the real boundary
and the fictitious boundary is based on experience and therefore
troublesome, especially for problems in complicated geometries
and higher dimensions [33,34].

The SBM also uses the fundamental solution as the basis func-
tion of its approximation. In contrast to the MFS, the collocation
and source points of the SBM are coincident and are placed on
the real boundary without using a fictitious boundary (see
Fig. 1(c) and (d)). The basic idea of this method is to introduce
the concept of the origin intensity factor to isolate the singularity
of the fundamental solutions, so that the source points can be
placed on the real boundary directly. With this idea in mind we
represent the SBM interpolation as [11]
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