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a b s t r a c t

The estimation of gear stiffness is important for determining the load distribution between the gear teeth
when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the
boundary condition through the gear rim size included in the stiffness calculation and secondly the size
of the contact. In the FE calculation the true gear tooth root profile is applied. The meshing stiffnesses of
gears are highly non-linear, it is however found that the stiffness of an individual tooth can be expressed
in a linear form assuming that the contact width is constant.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

To evaluate the forces in a multibody formulation of a planetary
gearbox where multiple planet gears are in contact with the ring
and sun gear an algebraic constraint formulation cannot be used
if the forces on the individual teeth of the involved gears are of
interest. We are forced to include in some way the gear contact
and here include the flexibility, as discussed in i.e., [1,2]. Including
the flexibility through a full integration of a finite element (FE) for-
mulation within the multibody simulation is not feasible due to
the simulation time needed. Instead hybrid methods of lumping
in some way the stiffness are needed. The present paper focuses
on the estimation of gear teeth stiffnesses, these stiffnesses can
then later be applied in a multibody modeling.

Gears are highly standardized and the most common gear de-
sign applied is controlled by the cutting tool or basic rack defined
in [3], and seen in Fig. 1. The gear load capacity can be evaluated
using [4]. The basic contacting gear shape is the involute shape,
due to the excellent properties of this shape. These properties in-
cludes that the contact forces act along a straight line and that a
center distance error do not influence this. A change in center dis-
tance due to, e.g., loading will neither influence the gear ratio. The
design variable that controls the involute shape is the pressure an-
gle a, see Fig. 1. The commonly used value for the pressure angle is
a ¼ p=9. The involute shape controls the gear part that is in contact
with the other gear in the mesh. The gear root or bottom land that
connects two neighboring teeth is controlled by the cutting tool tip

design, there is no contact between the teeth at the root. Different
ways of modifying the root design and improving the stress con-
centrations can be found in [5,6].

The contact between two involute gears follows the straight
contact line (the dotted line in Fig. 2) at all time during the contact.
Seen from the individual tooth the contact load moves along the
involute shape. Due to the design of a tooth, see Fig. 2, this results
in an overall non-linear tooth stiffness along the contact line.

The tooth stiffness is needed for multiple reasons. For gears in
mesh we have different number of teeth in contact during the
motion. For spur gears produced from a standard rack cutter with
a ¼ p=9 and a height of 2M, i.e., two times the module (see [3] and
Fig. 1) we have that the maximum contact ratio is ð�aÞmax � 1:98.
The contact ratio expresses the average number of teeth in contact
during the motion. With more than two sets of teeth in contact we
need the tooth stiffness for finding the load on the individual tooth.
This is also the case for planetary gears where multiple planet
gears are in contact with the sun gear and the ring gear. The nature
of the gear mesh contact is discontinuous, for standard spur gears
there are at some instance in time either one or two gear teeth sets
in contact and this transition result in discontinuous mesh
stiffness.

From a literature study it is obvious that many different ap-
proaches have been applied. In [7] FE analysis was used for the
tooth stiffness estimation. Here a model with only one tooth at-
tached to a rim/ring with a given thickness of 2.5 times the tooth
height was applied. The stiffness is calculated for two gears in con-
tact, for one gear a torque is applied to the rim inner boundary and
at the other gear the rim inner boundary is fixed. The tooth root is
assumed circular. A principally different way of estimating the
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stiffness is to use the elastic energy. Using the elastic energy and
the applied force for specifying the stiffness is clear and concise,
the need for finding a deflection corresponding to the force is
avoided. This way of establishing the stiffness is used in relation
to bolt plate stiffness in [8–10] and is also the selected method
in the present paper. In [11] the stiffness is found using an analyt-
ical estimation of the complementary elastic energy, several
assumptions are applied in this work. Further stiffness evaluation
of spur and helical gears can be found in, e.g., [12–17].

In the present paper two factors are found to have a major influ-
ence on the gear tooth stiffness, these are

� The gear rim size included in the stiffness calculation.
� The contact zone size.

To the authors knowledge no thorough examination have been
published in relation to these two factors, even for the simple case
of spur gears. The bending strength calculations of most standards
rely on the cantilever beam assumption (Timoshenko theory) and
the tooth is clamped at the root. This is also the general choice
for estimating the stiffness either by analytical method or numer-
ical FE calculations. The present paper will focus on the definition
of boundary conditions, and the influence from the contact zone
width.

The paper presents an example where the found stiffnesses are
used in the simulation of a planetary gearbox of a 500 MW wind
turbine. Modeling specifically related to planetary gearbox can be
found in, e.g., [18] and in relation to wind turbine drive train see
e.g., [19,20].

The paper is organized as follows. Section 2 presents the geo-
metric description and the tooth boundary parameterization. In
Section 3 the individual tooth stiffness is given. The section
includes a discussion on the important selection of boundary
condition and contact width. The combined stiffness of two gear

teeth in contact and the overall meshing stiffness are found. Sec-
tion 4 presents an example where stiffnesses found using the pro-
posed approach is used in a planetary gearbox of a wind turbine.
Finally a generic gear tooth geometry determination in parametric
form is presented in the Appendix A.

2. Parametric geometry description

The ISO profile gear geometry is controlled by the cutting tools
outer profile design as presented in Fig. 1. The standard profile is
defined by connected curve segments (arc of circles and straight
lines). A procedure for finding the curve segments can be found
in [5,6] and in the appendix of the present paper.

The gear tooth contact geometry is the envelope defined by
rotating and simultaneously translating the straight side of the cut-
ting tool. For this segment we know that the envelope corresponds
to the involute shape, which for the curve given in Fig. 3 is given as
a function of s by

xðs=rbÞ
yðs=rbÞ

� �
¼

cosðs=rbÞ � sinðs=rbÞ
sinðs=rbÞ cosðs=rbÞ

� �
rb

�s

� �
ð1Þ

where rb is the base circle radius, the parameter s is the base circle
arc length which is directly related to the involute arc length. The
base circle radius is given by

rb ¼ M
z
2

cosðaÞ ð2Þ

where z is the number of gear teeth.
We may use (1) as a specific alternative to the general parame-

terization presented in the appendix.
The present papers primary objective is finding the tooth stiff-

ness as a function of the loading point on the gear. In [11] the load
position is defined by a profile parameter defined as

n ¼ z
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

c

r2
b
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s
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where rc is the distance from the gear center to the contact point
(see Fig. 3). We directly see that

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

c � r2
b

q
ð4Þ

n ¼ s
z

2prb
¼ s

pM cosðaÞ ¼
s
sd

ð5Þ

here we have defined the contact pitch sd ¼ pM cosðaÞ, this distance
is only a function of the pressure angle a and the module.

The stiffness will in the present paper be given as a function of
the base circle arc length s, from (4) and (5) follows that it can di-
rectly be scaled to be given as a function of rc or n. The base circle

Fig. 1. The cutting profile geometric definition and the basic profile based on the
ISO profile.

Involute

Root

α

Fig. 2. Part of a gear with 20 teeth and module M ¼ 10 mm. The line of contact is
indicated by the dotted line, the angle is a assuming that no profile shift have been
applied to both gears in mesh.

Fig. 3. Base circle and involute geometry, the angle is defined by the base circle arc
length s. An arbitrary contact load Fc is shown to be perpendicular to the involute
shape.
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