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a b s t r a c t

This paper presents a detailed analysis of the continuous retardation spectra corresponding to a number
of concrete creep models stipulated by various codes and recommendations. Approximations of various
orders based on the Post–Widder formula are constructed, and the accuracy of the corresponding Dirich-
let series approximating the compliance function is assessed. It is shown that the accuracy can often be
substantially increased by appropriate modifications of the discrete retardation times used by the
Dirichlet series. Practical hints regarding the choice of the discrete retardation times and the order of
integration used in the evaluation of the compliance coefficients are provided.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

At sufficiently low stress levels, creep of concrete can be
described by models formulated within the framework of linear
viscoelasticity with aging. Once the principle of superposition is
accepted, the material behavior is uniquely described by the com-
pliance function or, alternatively, by the relaxation function. The
compliance function reflects the time evolution of strain in a creep
test at the unit stress level, while the relaxation function reflects
the time evolution of stress in a relaxation test at the unit strain le-
vel. The uniaxial stress–strain relation can be written in one of the
following equivalent forms:

rðtÞ ¼
Z t

0
Rðt; t0Þ deðt0Þ ð1Þ

eðtÞ ¼
Z t

0
Jðt; t0Þ drðt0Þ ð2Þ

Here, times t and t0 correspond to the age of concrete, measured
from the initial setting time, i.e., from the time when the hardening
fresh concrete first becomes a solid (typically several hours after
mixing), and therefore the stress and strain are not defined for neg-
ative times. The integrals are understood in the Stieltjes sense, so
that they can be evaluated even for discontinuous stress and strain
evolutions.

If the material point remains stress-free up to some initial time
t1, at which a stress r1 is applied abruptly and after which the
stress evolves as a differentiable function of time, Eq. (2) can be
rewritten in terms of the usual Riemann integral as

eðtÞ ¼ r1Jðt; t1Þ þ
Z t

t1

Jðt; t0Þ _rðt0Þ dt0 ð3Þ

where _r denotes the stress rate. Generalization to multiaxial stress
states is straightforward under the assumptions of isotropic behav-
ior and constant Poisson ratio. The structure of Eq. (3) is then pre-
served, with scalars e and r replaced by column matrices of strain
and stress components, and with the right-hand side multiplied
from the left by the elastic compliance matrix corresponding to
the unit value of Young’s modulus. The compliance function retains
its scalar character.

Since creep tests are much more common in practice than
relaxation tests, all design codes as well as academic concrete
creep models consider the compliance function as the primary
characteristic and describe it by a suitable formula with several
parameters that can be calibrated by fitting of experimental data
or estimated using empirical formulae (which usually take into ac-
count the concrete mix composition, curing time and conditions,
member size and shape, and ambient relative humidity).

Analytical evaluation of the integral in (3) is possible only for
simple models and simple stress histories. For general applications,
numerical integration schemes are needed. If the integral in (3) is
directly replaced by a finite sum [1], the memory requirements
and number of arithmetic operations quickly grow with increasing
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number of computational time steps. For the evaluation of the
creep strain increment based on such a direct integration scheme,
the values of stress increments in all previous time steps must be
known. In very large structural systems, the storage of the entire
stress history at each integration point of each finite element and
the evaluation of history integrals can become prohibitively expen-
sive, even on modern powerful computers.

The computational complexity of the problem can be substan-
tially reduced if the integral stress–strain relation is replaced by
a differential one, dealing with certain history (internal) variables.
The key idea is that a general compliance function (non-aging or
aging) can be approximated by a Dirichlet series corresponding
to a Kelvin rheological chain. Each unit of the chain is described
by a differential equation that can be efficiently integrated in a
step-by-step manner, as was first proposed in [2] for non-aging
viscoelasticity and later extended in [3] to aging viscoelasticity.
In contrast to the integral approach, it is not necessary to store
the entire previous history but only a limited (and fixed) number
of history variables that are updated after each step. The number
of numerical operations per step is constant, independent of the to-
tal number of steps.

One unit of a Kelvin chain consists of a linear elastic spring and
a linear viscous dashpot, coupled in parallel. In the case of non-
aging viscoelasticity, its compliance function is given by

Jðt; t0Þ ¼ 1
E

1� e�ðt�t0 Þ=s� �
Hðt � t0Þ ð4Þ

where E is the spring stiffness (modulus), s ¼ g=E is the retardation
time, g is the viscosity of the dashpot, and H is the Heaviside step
function. The right-hand side of (4) depends on the time lag t � t0

only, rather than on the times t and t0 separately. This is typical of
non-aging materials. By coupling several Kelvin units in series, we
obtain a Kelvin chain with compliance function in the form

Jðt; t0Þ � Uðt � t0Þ ¼ 1
E0
þ
XM

l¼1

1
El

1� e�ðt�t0 Þ=sl
� �" #

Hðt � t0Þ ð5Þ

where El;gl and sl ¼ gl=El are respectively the moduli, viscosities
and retardation times of individual units l ¼ 1;2 . . . M, and E0 is the
modulus of an elastic spring that is used as the ‘‘zeroth’’ unit of the
chain and represents instantaneous elasticity. For convenience, we
have introduced a new symbol U, denoting the compliance function
considered as a function of a single variable—the time lag t � t0.

For deeper understanding of the behavior of a viscoelastic mate-
rial, especially with regard to the time scale at which the viscous pro-
cesses take place, the concept of retardation spectrum turns out to
be useful. One Kelvin unit has a well-defined characteristic time,
the retardation time s ¼ g=E, which sets the intrinsic time scale of
the model and determines which loading rates are considered as
‘‘slow’’ and which as ‘‘fast’’. The retardation time s and the compli-
ance 1=E are parameters of the compliance function (4) and uniquely
characterize the model. A Kelvin chain can be characterized by the
retardation times of individual units, sl, and the corresponding
compliances, 1=El;l ¼ 1;2; . . . M, and by the instantaneous compli-
ance 1=E0. A general viscoelastic model can be characterized by a
continuous spectrum of retardation times and compliances. From
the mathematical point of view, such a spectrum is related to the in-
verse Laplace transform of the compliance function.

In a similar spirit, one could define the relaxation spectrum,
which would be related to the inverse Laplace transform of the
relaxation function, and for a Maxwell chain (obtained by coupling
in parallel several Maxwell units, each of which consists of a spring
and a dashpot coupled in series) would be discrete. As already
mentioned, models for creep of concrete used in practice specify
the compliance function and not the relaxation function, and so
we will restrict our attention to the retardation spectrum.

The notion of retardation spectrum was introduced into con-
crete creep modeling in [4] and the influence of the specific choice
of discrete retardation times was discussed in [5]. Continuous
retardation spectra for the solidification theory of concrete creep
were studied in [6,7]. If the limitations on available computational
resources are not a major issue, extremely broad discrete spectra
can be used [8]. In this paper we demonstrate that the efficiency
and accuracy can be improved by a careful choice of the approxi-
mation method, taking into account the specific properties of var-
ious types of concrete creep models. The general technique
presented in Section 2 will be applied to the log-power law in Sec-
tion 3, to the ACI and CEB models in Section 4, to the drying creep
compliance function of the B3 model in Section 5, to the JSCE mod-
el in Section 6, and finally to the new fib model in Section 7.

2. Relation between compliance function and retardation
spectrum

Consider the Dirichlet series in (5), representing the compliance
function of a non-aging Kelvin chain. The diagram of the compli-
ances 1=El versus ln sl is called the retardation spectrum of the
material. For a Kelvin chain model with a finite number M of Kelvin
units, the spectrum is discrete, consisting of a set of vertical lines
(Fig. 1(a)). However, it is advantageous to conceive a generalization
of Eq. (5) in which the spectrum is continuous (Fig. 1b), that is, the
chain consists of infinitely many Kelvin units with infinitely small
compliances 1=El and with the retardation times sl distributed
infinitely closely. According to this generalization, well known
from classical viscoelasticity (e.g. [9]), one has, as the limit case
of (5),

UðtÞ ¼
Z 1

s¼0
LðsÞð1� e�t=sÞdðlnsÞ; t P 0 ð6Þ

in which function LðsÞ characterizes the continuous spectrum. It
should be noted that if L is a regular function (without any Dirac-
like terms), UðtÞ is continuous and vanishes at t ¼ 0. Therefore,
the instantaneous compliance is not reflected in the spectrum and
must be added as a separate constant 1=E0, which is of course
straightforward.

The continuous spectrum is very useful when a given compli-
ance function (e.g., defined by an analytical formula containing
power functions and logarithms) is to be approximated by a Dirich-
let series, which is needed for an efficient rate-type numerical ap-
proach. Of course, one could try to construct the approximation
directly, by collocation [10] or by minimizing a suitable measure
of the difference between the ‘‘exact’’ compliance function and
the Dirichlet series. This is a somewhat tedious procedure, which
can be circumvented by considering the Dirichlet series (5) as a
numerical approximation of the integral in (6). If function LðsÞ is
known and the discrete retardation times sl are selected, determi-
nation of the compliances 1=El is straightforward.

An important point is that a good approximation of the contin-
uous spectrum can be obtained analytically, exploiting the Post–
Widder formula [11,12] for the inversion of Laplace transform. It
can be shown that the sequence of approximations

LkðsÞ ¼ �
ð�ksÞk

ðk� 1Þ! UðkÞðksÞ; k ¼ 1;2; . . . ð7Þ

converges to the continuous spectrum, i.e.,

LðsÞ ¼ lim
k!1

LkðsÞ ð8Þ

Here, k is the desired order of approximation, and UðkÞ denotes the
kth derivative of the compliance function.

Formula (7) can be derived by differentiation of Eq. (6). Taking
the kth derivative with respect to t, we obtain
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