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a b s t r a c t

A numerical method based on topology optimization is proposed to generate optimal strut-only models
for structures made of plain concrete and optimal strut-and-tie models for concrete structures where
fixed regions of reinforcement are prescribed. Assuming concrete as a hyper-elastic material carrying
only compression, both the inherently nonlinear equilibrium equation and the energy-based topology
optimization problem are solved within the same minimization procedure. Numerical simulations
investigate load paths within the two-dimensional domain in case of conventional rebar cages. A stress
diffusion problem is considered as well.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Strut-and-tie models (STMs) are of primary importance when
designing reinforced concrete members. This detailing approach
investigates truss-like structures to define statically admissible
load paths that connect the load application points to the ground
constraints, see e.g. [1]. It was firstly introduced to cope with the
transversal reinforcement for shear design of beams [2,3] and then
extended to the so-called D-regions of reinforced concrete struc-
tures, where the Bernoulli hypothesis does not hold due to any dis-
continuity in the geometry of the specimen or in the load pattern
[4]. A complex strain/stress state arises in these regions, meaning
that the conventional assumption about cross sections remaining
plane after bending falls. This implies that standard design meth-
ods based on the beam theory cannot be applied. According to
the plasticity theorem, any statically admissible truss-like struc-
ture that does not violate the yield criteria has a load-carrying
capacity that is a lower-bound of the ultimate strength of the spec-
imen. This supports the adoption of strut-and-tie modeling to
define statically admissible load paths for a proper detailing of
the D-regions.

Methods of structural optimization have been used to generate
suitable strut-and-tie models among the number of truss-like
structures that can be defined within a certain domain. The ground
structure approach was firstly adopted to select minimum energy
or minimum weight strut-and-tie models addressing grids of
discrete trusses, see e.g. [5–8]. Afterwards, topology optimization

was introduced to generate optimal truss-like layouts adopting
the same objective functions but resorting to the finite element
modeling for plane problems. Evolutionary structural optimization
was used in the pioneering approaches proposed in [9–13],
whereas the distribution of solid isotropic material according to
the SIMP model for stiffness penalization [14] was adopted e.g.
in [15–20]. The latter approach has also been used for the concep-
tual design of optimal layouts of steel reinforcement dropping
the conventional strut-and-tie approach and moving towards more
general problems of topology optimization for reinforced concrete
structures, involving non-symmetric strength constraints, see e.g.
[21–23], damage mechanics [24,25], elastoplasticity, see [26].
Remaining in the field of strut-and-tie modeling, an alternative
approach combining truss design and topology optimization has
been recently presented in [27,28] to look for load paths that are
not only statically admissible but also consistent with the stress
flow in the concrete element.

To ensure appropriate safety standards, designers are generally
required by technical codes to neglect the limited tensile strength
of concrete when detailing reinforced concrete beam sections at
the ultimate limit state. Indeed, strut-and-tie modeling stands on
the assumption that concrete carries compressive stresses only,
whereas steel is used as a reinforcement to carry any tensile stress.
According to technical rules, best STMs can be selected through
energy-based criteria [29]. These prescriptions explain the strong
interest of the community of designers towards the adoption of
simple numerical methods exploiting topology optimization to
distribute linear elastic isotropic material and achieve truss-like
layouts as preferred strut-and-tie load paths, see [30]. Assessment
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of the achieved results and detailing of each member making the
optimal STM can be performed subsequently through ad hoc tools,
see e.g. [31].

Unfortunately, the linear elastic approach fails when addressing
the achievement of energy-based load paths in structures where
the layout of the reinforcement is already prescribed (due to the
adoption of a fixed rebar cage) or when copying with the optimal
design of plain concrete members (with no rebar allowed except
for the secondary reinforcement intended for ductility and durabil-
ity requirements only). In these cases, conventional methods of
topology optimization should be modified to avoid the arising
of any tensile-stressed member within the concrete domain.
This can be conveniently pursued by implementing methods of
energy-based topology optimization for compression-only
materials.

Alternative formulations have been proposed in the last dec-
ades to address tension-only or compression-only materials in
topology optimization. Most of them resort to non-linear model-
ing, see e.g. [32], or to re-modeling theories and material replace-
ment strategies that distribute the unilateral material depending
on the directions of the stress flows computed in the design
domain, see e.g. [33,17,34]. A simplified stress-based approach
has been presented in [35] that implements a smooth approxima-
tion of the unilateral condition through the formulation of a suit-
able version of the Drucker–Prager strength criterion. Due to the
inherent isotropic modeling, this approach cannot be straightfor-
wardly applied to structures governed by any complex biaxial
stress state. In this case, a full no-tension/no-compression model-
ing of the constitutive behavior of the material should be
implemented.

Hyper-elasticity of unilateral materials allows solving the
inherently nonlinear equilibrium through the minimization of
the strain energy, see in particular [36]. The energy-based
approach presented in [37] is herein exploited to address the gen-
eration of optimal STMs through a topology optimization problem
that copes with concrete as a compression-only material. An equiv-
alent orthotropic medium is defined, exhibiting negligible stiffness
for any direction along which a tensile principal stress must be pre-
vented. Two sets of density unknowns are needed to control the
stiffness of the equivalent composite along its symmetry axes,
which should be oriented along the principal stress directions of
the no-tension body. The topology optimization problem adopts
the weight as objective function, whereas a global constraint is
prescribed on the overall compliance of the specimen (made of
plain concrete or concrete reinforced by a fixed rebar cage). Its
solution is performed adopting an established method of sequen-
tial convex programming, the Method of Moving Asymptotes
MMA [38]. The compression-only behavior is efficiently enforced
through an ad hoc penalization of the energy terms related to
any tensile stress arising during the optimization.

The layout of the paper is as follows. Section 2 recalls the ratio-
nale used to model a compression-only solid as an equivalent
orthotropic medium, whereas Section 3 introduces the energy-
based topology optimization problem that is used to derive opti-
mal STMs addressing concrete as a compression-only material.
Section 3.1 provides details on the implementation of the solving
algorithm. Features of the achieved optimal STMs are discussed
in Section 4, presenting numerical examples and providing com-
parison with optimal layouts found through the conventional
approach with linear elastic modeling and equal behavior in ten-
sion and compression of the material. Section 4.1 is devoted to
optimal strut-only models for structures made of plain concrete.
Section 4.2 deals with optimal strut-and-tie models for concrete
structures where fixed regions of reinforcement are prescribed.
Section 5 resumes the main findings of the work, outlining future
extensions of this research.

2. A material interpolation for concrete

Young modulus E and non-negative Poisson’s ratio m are herein
assumed for a material that can sustain only compressive stresses,
dealing with plane stress conditions. The principal axis zIII is
orthogonal to the reference plane whose coordinates are labeled
z1 and z2. Let rI; rII and rIII ¼ 0 be the principal stresses for the
tensor rijðvÞ, as computed at any point v 2 X, with rI 6 rII .

The domain X is divided into three sub-regions such that
X ¼ X1 [X2 [X3 and:

X1 ¼ v 2 X : rI < 0; rII < 0;
X2 ¼ v 2 X : rI < 0; rII ¼ 0;
X3 ¼ v 2 X : rI ¼ 0:

ð1Þ

In sub-region X1 the material is acted upon by biaxial compression
and behaves as any conventional isotropic medium. In X2 the mate-
rial is acted upon by uniaxial compression and behaves as an ortho-
tropic medium. A fully elastic behavior is recovered along the
compressive isostatic line, whereas some inelastic strain ec P 0
arises in the orthogonal direction. In sub-region X3 neither stress
nor elastic strain is found and the solid behaves as a ‘‘void phase”,
meaning that any positive semi-definite inelastic strain is allowed.

An equivalent orthotropic material model has been formulated
in [37] to describe the outlined behavior through the same closed-
form expression at any point v 2 X. This may be done introducing
two fields of density unknowns that allow specializing the behav-
ior of the solid in each of the sub-regions X1; X2 and X3 of Eq. (1),
penalizing the stiffness of the orthotropic material along its sym-
metry axes ez1 and ez2. Principal stress directions zI and zII and the
symmetry axes ez1 and ez2 share the same orientation, as provided
by the angle h, see Fig. 1. Referring to the elastic constants of the

equivalent orthotropic medium, eE1; eE2 are the Young moduli of

the material (along ez1 and ez2, respectively), eG12 is the shear mod-
ulus and em12; em21 are the Poisson’s ratios. It is recalled that the

equality emij
eEj ¼ emji

eEi holds.
The design problem will be solved through a displacement-

based finite element method, adopting four node bilinear ele-
ments. In view of the adoption of such a discretization, let denote
as x1e and x2e the density unknowns that govern the behavior of the
equivalent composite along its symmetry axes (i.e. the isostatic
stress lines of the compression-only material) related to each
element of the mesh. Following a generalization of the SIMP (Solid
Isotropic Material with Penalization) [14,39] used in topology
optimization for isotropic materials, the elastic constants for the
equivalent orthotropic material can be written as:

eEi ¼ xpieE;
eGij ¼ xpiex

p
je

E
2ð1þ mÞ ; emij ¼ xpjem; for i; j ¼ 1;2: ð2Þ

Reference is made to [40,41] for the original development of the
above formula within the framework of derivable optimality
criteria methods for structural optimization. As usually done in con-
ventional formulations for the topology optimization of isotropic
materials the penalization parameter is assumed such that p ¼ 3,
see in particular [30]. The interpolation in Eq. (2) is especially con-
ceived to provide vanishing stiffness along any direction along
which the relevant density unknown, x1e or x2e, takes its minimum
value. In the general reference with axes z1 and z2, denoting by
re ¼ ½r11 r22 r12� the vector of the stress components for the e-th
element and by ee ¼ ½e11 e22 2e12� the corresponding strain compo-
nents, the constitutive law for the equivalent orthotropic material
reads:

re ¼ TðheÞ�1Cðx1e; x2eÞTðheÞ�tee; ð3Þ
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