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a b s t r a c t

In this paper, the Hamiltonian approach developed for beam with solid cross-section is generalized to
deal with beams consisting of thin-walled panels. The governing equations of plates and cylindrical shells
for the panels are cast into Hamiltonian canonical equations and closed-form central and extremity
solutions are found. Typically, the end-effect zones for thin-walled beams are much larger than those
for beams with solid cross-sections. Consequently, extremity solutions affect the solution significantly.
Correct boundary conditions based on the weak form formulation are derived. Numerical examples are
presented to demonstrate the capabilities of the analysis. Predictions are found to be in good agreement
with those of plate and shell FEM analysis.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled beams may be represented as an assembly of flat
strips, or cylindrical shells, or both. Typically three length scales
are involved: the wall thickness, which is far smaller than a repre-
sentative dimension of the cross-section, the representative
dimension of the cross-section, which is far smaller than the
beam’s length, and the beam’s length. Due to these geometric
characteristics, the deformation of thin-walled beams under load
differs from that observed for beams with solid cross-sections.
Under torsional loading, thin-walled beams may exhibit significant
warping. Furthermore, if the cross-section is restrained from
warping, axial and shear stresses develop, a phenomenon known
as constrained or nonuniform torsion.

Thin-walled beam theories reduce the analysis of two-
dimensional structures to one-dimensional problems that are far
simpler to solve. Although more sophisticated formulations, such
as those based on two-dimensional plate or shell finite element
or finite strip methods, are able to capture the in-plane and out-
of-plane warping behavior of thin-walled beams to the desired
level of accuracy, the associated computational burden is often
too heavy. Moreover, two-dimensional approaches do not provide
an intuitive interpretation of the observed phenomena. The main
goal of thin-walled beam theories is to approximate the assembly
of two-dimensional plate and shell structures with one-
dimensional models, while retaining an accurate representation

of the local stress and strain fields over the contour of the cross-
section.

Classical thin-walled beam theories have been proposed by
Vlasov [1], Benscoter [2], Gjelsvik [3], and Shakourzadeh et al. [4]
for isotropic thin-walled beams with open and closed cross-
sections, respectively, based on kinematic assumptions. In many
applications, thin-walled beams are, in fact, complex built-up
structures with layers of anisotropic material stacked through
the thickness of the walls. This new type of structural component
prompted the development of new thin-walled beam theories
[5–7]. With the goal of capturing the intricate stress field that
develops under load, further refinements then followed by
introducing more cross-section warping modes [8]. Although these
approaches lead to higher accuracy, the number of unknowns
increases considerably; furthermore, the identification of the
dominant modes is often arduous.

Efficient thin-walled beam models can be obtained more rigor-
ously from two-dimensional plate and shell equations through
dimensional reduction techniques that split the original problem
into a one-dimensional analysis over the beam’s span and a one-
dimensional cross-sectional analysis along the section’s contour.
These approaches can handle thin-walled beams made of anisotro-
pic composite materials without increasing the total number of
unknowns.

Asymptotic and multiscale analysis methods have been the
tools of choice for dimensional reduction. Berdichevsky [9]
proposed the Variational Asymptotic Method (VAM), in which
asymptotic analysis is applied to the energy functional. Classical
and Reissner thin-walled composite beam models based on VAM
were developed by Hodges et al. [10,11].
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It is not necessary to use asymptotic methods to tackle thin-
walled beam problems. Beam equations can be obtained directly
through a separation of variables approach over the span-wise
and along the section’s contour directions. An approach of this type
is the Generalized Beam Theory (GBT) proposed by Schardt [12]
and further developed by numerous authors [13–18], among
others. The formulations based on GBT provide a general procedure
to determine the section’s deformation modes. Projection of the
governing equations onto these deformation modes leads to a
unified and efficient one-dimensional beam formulation. This
approach has been extended to buckling analysis (second-order
GBT) and post-buckling analysis (third-order GBT).

A fundamental challenge indimensional reductionof beamprob-
lems is to identify the algebraic structure of the cross-section’s
deformation modes and the characteristics of the corresponding
solutions. Giavotto et al. [19] identified two types of solutions for
beam problems: the central solutions, which are the solutions of
Saint-Venant’s problem, and the extremity solutions, which decay
exponentially away from the beam’s ends.

Mielke [20,21] found that the solutions of Saint-Venant’s
problem correspond to the center manifold of the system, which
is spanned by the twelve generalized eigenvectors associated with
four distinct Jordan chains. Of these twelve generalized eigenvec-
tors, six correspond to the beam’s rigid-body modes while the
others six are the fundamental deformation modes of the beam:
extension, torsion, and bending and shearing in two directions.

Zhong [22] developed novel analytical techniques based on the
Hamiltonian formalism. A Hamiltonian operator characterizes the
stiffness of the structure and its null and purely imaginary
eigenvalues give rise to the solution of Saint-Venant’s problem.
The eigenvalues presenting a non-vanishing real part give rise to
decaying solutions. As previously stated by Mielke, Zhong also
identified the Jordan chains associated with the eigenvalues of
the Hamiltonian operator with a vanishing real part.

Bauchau and Han [23] developed a three-dimensional beam
theory based on the Hamiltonian formalism. The approach pro-
ceeds through a set of structure-preserving transformations using
symplectic matrices and decomposes the solution into its central
and extremity components. The same authors further generalized
the approach to initially curved beams undergoing large motion
but small strains [24], and helicoidal beams subjected to
distributed loads [25]. For beams with solid cross-sections, the
non-vanishing eigenvalues are associated with very small end
effect zones near the beam’s ends [25].

In this paper, the Hamiltonian formalism is extended to thin-
walled beam problems. Governing equations of plates and shells
for the panels are cast into Hamiltonian canonical equations and
closed-form central and extremity solutions are found based on a
procedure similar to that used for beams with solid-section.
Typically, the end-effect zones for thin-walled beams are much
larger than those for beams with solid cross-sections. Conse-
quently, the extremity solutions should be taken into account
because they alter the solution over the entire span of the beam.
The other factor that makes extremity solutions important is the
boundary condition. When subjected to twisting or shearing,
thin-walled beams warp significantly. Far away from the end
conditions, this warping if free to develop, but it is not consistent
with built-in boundary conditions, a phenomenon known as
‘‘constrained warping effects.” Saint-Venant’s solution, which con-
sists of the central solutions only, cannot predict constrained
warping effects. Extremity solutions must be considered to satisfy
the boundary constraints. In this paper, the boundary conditions
are enforced in a weak sense, leading to a set of over-determined
equations. Accurate predictions are obtained by combining central
and extremity solutions, the latter are excited by the boundary
conditions.

The following assumptions are made: (1) the straight thin-
walled beam is an assembly of plates, or cylindrical shells, or both;
(2) cross-sections of arbitrary geometry and material properties
(heterogeneous and anisotropic) are considered, but remain uni-
form along the span; (3) strains and warping displacements remain
small. Due to these assumptions, the governing equations of the
problem can be cast into a homogenous Hamiltonian system with
constant coefficients.

The paper is organized as follows: the kinematics of the prob-
lem and the governing equations of thin-walled beam problems
are presented in Sections 2 and 3, respectively. The algebraic struc-
ture of the solutions is the focus of Section 4. The appropriate
boundary conditions are derived in Section 5 and numerical exam-
ples are presented in the last section.

2. Kinematics of the problem

Fig. 1 depicts a straight thin-walled beam consisting of an
assembly of plates and cylindrical shells, each of which is referred
to as a panel. The beam’s sectional contour, C, is the intersection of
the cross-sectional plane with the panels’ mid-planes. Let curve CðiÞ

denoted the contour of the ith panel. The straight reference line of
the beam is denoted C. Consider an arbitrary point B, located at the
intersection of the sectional plane with the reference line. Denote
rB the position vector of point B with respect to the origin of the
inertial frame, F ¼ O; I ¼ ð�ı1;�ı2;�ı3Þ½ �, and a1 the arc-length coordi-
nate along C. The unit tangent vector to curve C is �b1 ¼ @rB=@a1.
Because the plane of the cross-section is perpendicular to unit
vector �b1, a frame F B ¼ B;B� ¼ ð�b1;

�b2;
�b3Þ

� �
can be introduced

which defines the position and orientation of the cross-section in
the reference configuration, as illustrated in Fig. 1. Basis B� is
referred to as sectional basis. In the sequel, notation ð�Þ� indicates
tensor components resolved in the sectional basis B�.

2.1. Strain components

Consider an arbitrary material point of the beam, P, located on
contour CðiÞ. Let q denote the relative position of point P with

respect to point B and aðiÞ
2 the curvilinear coordinate measuring

the arc length along curve CðiÞ. A local basis, Bþ ¼ ð�b1;�tðiÞ; �nðiÞÞ, is
introduced, where �tðiÞ and �nðiÞ are the unit tangent and normal
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Fig. 1. Configuration of a beam with thin-walled section.
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