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a b s t r a c t

An inter-system iteration method is proposed for dynamic analysis of coupled vehicle–bridge system. In
this method, the dynamic responses of vehicle subsystem and bridge subsystem are solved separately,
the iteration within time-step is avoided, the computation memory is saved, the programming difficulty
is reduced, and it is easy to adopt the commercial structural analysis software for bridge subsystem. The
calculation efficiency of the method is discussed by case study and an updated iteration strategy is sug-
gested to improve the convergence characteristics for the proposed method.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic effect of the vehicle is an important problem in
railway bridge design, especially for high-speed railway and hea-
vy-haul railway bridges. In recent years, the dynamic analysis of
vehicle–bridge interaction system has been carried out for lots of
cases to ensure the safety of bridge structure and running train
vehicles and the riding comfort of passengers. For example, the lat-
eral amplitude of steel plate girders with 20–40 m spans was found
too large after the raise of train speed during 2000–2003 in China.
To enhance the lateral stiffness of the girders, Xia et al. [1] per-
formed numerical analysis on vehicle–bridge system to over 100
reinforcement measures and decided the final ones. Through in site
experiments, the reinforcement measures were validated that they
can effectively reduce the lateral amplitude as predicted.

In most of the researches, the vehicle is modeled by the multi-
body dynamics, while the bridge is modeled by the FEM (finite ele-
ment method) discretized with the direct stiffness method or the
modal superposition method. In these analyses, the wheel–rail
interaction assumptions are quite different, which they can be di-
vided into three categories:

(1) Moving loads. By neglecting the local vibration and the mass
effect, the vehicle can be simplified into a series of moving
loads. The method is widely used in analytical studies and
the cases with low bridge stiffness. Only the bridge model
is adopted in the method and the system can be analyzed
by a time history integral method.

(2) Compatible motion relationship. The vehicle and the bridge
are linked with the wheel–rail relative motion relationship.
In vertical direction, the wheel-set is commonly assumed
to have the same motion with the track at the wheel–rail
contact point. In lateral direction, Xia et al. [1] and Xu
et al. [2] used the hunting movement to define the wheel–
rail relative motion, while Guo et al. [3] took the measured
bogie hunting movement as the lateral system exciter.

(3) Force–motion relationship. The wheel–rail interaction force is
defined as the function of wheel–rail relative motion. Zhai
et al. [4] adopted the Kalker’s linear theory and the Hertz
contact theory to define the wheel–rail interaction force, in
which the lateral/tangent wheel–rail force is the product of
the creep coefficient and the wheel–rail relative velocity,
the vertical/normal wheel–rail force has a non-linear rela-
tionship to wheel–rail relative compression deformation.
Zhang et al. [5] simplified the Zhai’s definition to meet the
linear wheel–rail relation both in lateral and vertical direc-
tions. Torstensson et al. [6] and Fayos et al. [7] modeled
the rotating wheel-set and derived the wheel–rail interac-
tion force by kinematics methods.

Some researches focused on the effect of the parameters in the
vehicle–bridge interaction system, including the effects of the ratio
of train/bridge natural frequency, the ratio of train/bridge mass,
the ratio of train/bridge length [8], the track irregularity, the bridge
skewness [9], the bridge stiffness and the bridge damping [10].

The numerical method in solving the vehicle–bridge interaction
equations is dependent on the wheel–rail interaction assumption.
Gao and Pan [11], Li et al. [12] and Jo et al. [13] modeled the vehicle
and the bridge subsystem separately, and solved them with time
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history integral method TSI (time-step iteration), where the two
subsystems meet the equivalent equations within each time-step
by iteration. Xia et al. [1], Antolin et al. [14] and Yang and Yau
[15] coupled the two subsystems into global equations with vary-
ing coefficients by adopting the wheel–rail interaction into the
non-diagonal sub-matrices. Feriani et al. [16] and Shi et al. [17]
used a complete time history iteration method in which the two
subsystems was analyzed separately and linked by an interface
program, but their studies only concerned the vertical interaction
force for highway bridges and trucks.

The lateral and the torsional interaction forces are not necessary
for analysis of highway bridges but are very important for railway
bridges. In this paper, an iteration method for solving the railway
vehicle–bridge interaction system is proposed, considering the ver-
tical, lateral and torsional interaction between the bridge and the
railway vehicle, and adopting the track irregularity and the
wheel–rail force–motion relationship (inter-system iteration, ISI).
In the ISI method, firstly, the bridge subsystem is assumed rigid,
while the vehicle motion and wheel–rail force histories are solved
by the independent vehicle subsystem for the complete simulation
time; next the bridge motion can be obtained by applying the pre-
viously obtained wheel–rail force histories to the independent
bridge subsystem. Following, the updated bridge deck motion his-
tories are combined with the track irregularities to form the new
excitation to the vehicle subsystem for the next iteration process,
until the given error threshold is satisfied.

2. The ISI analysis method for vehicle–bridge interaction system

The vehicle–bridge interaction system is composed by the vehi-
cle subsystem and the bridge subsystem; the two subsystems are
linked by the wheel–rail interaction; the given track irregularity
is taken as an additional system exciter.

The same coordinate systems are adopted for the both subsys-
tems and the track irregularity: X denotes the train running direction,
Z upward, and Y is defined by the right-hand rule. U, V and W denote
the rotational directions about the axes X, Y and Z, respectively.

The coordinate systems of both vehicle and bridge subsystem are
absolute, and they have the same coordinate direction and length
unit. Each rigid body in the vehicle has its independent coordinate
system, with the origin in Y and Z directions at the static equilibrium
position of each rigid body. According to the assumptions in Sec-
tion 2.1, there is no X-DOF considered in the vehicle subsystem, so
it is no need to define the origin of coordinates in X direction.

2.1. Vehicle model

The following assumptions are adopted for the vehicle model
and the wheel–rail interaction:

(A1) The train runs over the bridge at a constant speed.
(A2) The train can be modeled by several independent vehicles by

neglecting the interaction among them.
(A3) Each vehicle is composed of one car-body, two bogies, four

or six wheel-sets and the spring-damper suspensions
between the components.

(A4) By the Kalker’s Linear theory, the lateral (Y) displacement of
the wheel-set is the product of the creep coefficient and the
wheel–rail relative velocity.

(A5) By the wheel–rail corresponding assumption, the wheel-set
and the rail have the same vertical (Z) and rotational (U) dis-
placements at the wheel–rail contact point.

(A6) Each car-body or bogie has five independent DOFs in direc-
tions Y, Z, U, V and W; each wheel-set has 1 independent
DOF in direction Y and 2 dependent DOFs in directions Z and U.

Some measured results indicated that the wheel-set yaw angle
in high-speed trains is much smaller than that in the traditional
trains, partly due to the special structure of yaw dampers mounted
on the high-speed trains, thus the wheel-sets’ DOF in W direction
(yaw angle) is not considered in the vehicle model.

From assumption (A2), the vehicle subsystem can be considered
as several vehicles separately. Thus the dynamic equations for an
individual vehicle are:

MV
€XV þ CV

_XV þ KVXV ¼ PV ð1Þ

where MV, CV and KV are the mass, damping and stiffness matrices
of the vehicle, which are constant matrices [5]; PV is the force vec-
tor; XV is the displacement vector, containing the independent DOFs
of the car-body, the bogies and the wheel-sets. There are 19 inde-
pendent DOFs and 8 dependent DOFs for a 4-axle vehicle; 21 inde-
pendent DOFs and 12 dependent DOFs for a 6-axle vehicle. For
example, the displacement vector XV of a 4-axle vehicle is:

XV ¼ ½yC; zC;uC; vC;wC; yT1; zT1;uT1;vT1;wT1; yT2; zT2;uT2;vT2;

wT2; yW1; yW2; yW3; yW4�
T

where the subscript C stands for the car-body, T1 and T2 for the
front and rear bogie, W1 and W2 for the wheel-set linked to the
front bogie, W3 and W4 for the wheel-set linked to the rear bogie,
respectively.

2.2. Bridge model

The bridge model can be established by the FEM. The dynamic
equations for the bridge subsystem can be written as:

MB
€XB þ CB

_XB þ KBXB ¼ FB ð2Þ

where MB, CB and KB are the global mass, damping and stiffness
matrices, FB and XB are the force and displacement vectors of the
bridge subsystem, respectively.

It is very important to note that the lumped mass method can-
not be adopted for the mass matrix. Because if the diagonal ele-
ments related to the torsional (U) DOFs in MB is zero, the
torsional moment of the vehicle may cause unreasonable angular
acceleration for the bridge deck.

In some cases, the modal superposition method may be used in
modeling the bridge subsystem to reduce the number of DOFs. The
equations of the bridge subsystem are expressed as:

€XB þ 2nBxB
_XB þx2

BXB ¼ UT
BFB ð3Þ

where nB and xB are the damping ratio and circular frequency diag-
onal matrices, respectively; UB is the modal matrix.

For the same reason, if lumped mass method is adopted, there is
no torsional mode in UB and the torsional moment and angle can-
not be included in calculation. Therefore, the consistent mass ma-
trix for the bridge subsystem is used to reflect the torsional
dynamic characteristics of the bridge.

2.3. Track irregularity

The track irregularity is the distance of the actual position and
the theoretical position of the rail. According to the definition in
rail engineering, the track irregularities are defined as:

yI ¼ yRþyL
2

zI ¼ zRþzL
2

uI ¼ zR�zL
g0

8><
>: ð4Þ

where yL and yR are the lateral irregularities for the left and the right
rail; zL and zR are the vertical irregularities for the left and the right
rail; g0 is the rail gauge; yI, zI and uI are the align (lateral), vertical
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