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a b s t r a c t

Evidence theory has a strong ability to deal with the epistemic uncertainty, based on which the uncertain
parameters existing in many complex engineering problems with limited information can be conve-
niently treated. However, the large computational cost caused by its discrete property severely influences
the practicability of evidence theory. This paper aims to develop an efficient method to evaluate the reli-
ability for structures with epistemic uncertainty, and hence improve the applicability of evidence theory
in engineering problems. A uniformity approach is used to deal with the evidence variables, through
which the original reliability problem can be transformed to a traditional reliability problem with only
random uncertainty. It is then solved by using a response-surface-based reliability analysis method,
and a most probable point (MPP) is obtained. Based on the MPP, the most critical focal element which
has the maximum contribution to failure can be identified. Then using an approximate model created
based on this focal element, the reliability interval can be efficiently computed for the original epistemic
uncertainty problem. Three numerical examples are investigated to demonstrate the effectiveness of the
present method, which include two simple problems with explicit expressions and one engineering
application.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Products should be reliable, robust and safe against uncertainty
such as manufacturing imprecision, usage variation and imperfect
knowledge, so quantifying, controlling and managing the effects of
uncertainty at the design stage is important, sometimes even
imperative [1]. According to the idea that uncertainty is viewed
as the difference between the present state of knowledge and the
complete knowledge, it can be classified into aleatory and episte-
mic types [2]. Aleatory uncertainty, also named as objective or sto-
chastic uncertainty, describes the inherent variation associated
with a physical system or environment. The probability theory is
widely used to deal with the aleatory uncertainty when sufficient
information is available to estimate precise probability distribu-
tions. So far many probability-based reliability analysis techniques
have been well established and successfully applied to varieties of
industrial fields [3–6]. On the other hand, epistemic uncertainty is
referred to as the lack of knowledge or information in some phases
or activities of the modeling process [7], and hence the collection of
more information or an increase of knowledge would help de-
crease the level of uncertainty. Different kinds of theories have
been developed to handle the epistemic uncertainty, which include

possibility theory [8–10], fuzzy sets [11], convex models [12–19]
and evidence theory (or Dempster–Shafer theory) [20–24]. In pos-
sibility theory, evidence from different experts is always consistent
[10]. Fuzzy sets utilize the membership functions to characterize
the input uncertainty [11]. For many complex problems only a var-
iation bound of the uncertainty can be obtained, and in this case
convex models have been extensively applied to characterize and
propagate input uncertainty in order to calculate the interval of
the uncertain output [21]. Also, some theories have been devel-
oped to deal with the aleatory and epistemic uncertainty simulta-
neously, which include the p-box approach [25,26] and fuzzy
probabilities [27,28]. P-box approach is specified by the left and
right bounds on the cumulative probability distribution function
[25]. Fuzzy probabilities utilize fuzzy random variables to extend
reliability analysis to situations when the outcomes of some ran-
dom experiment are fuzzy sets [27].

Evidence theory seems to be more general than other uncer-
tainty modeling techniques [30]. Under different cases, evidence
theory will be equivalent to the classical probability theory, possi-
bility theory, p-box approach, fuzzy sets and convex models,
respectively. It can deal with limited and even conflicting informa-
tion from experts. Furthermore, the basic axioms of evidence the-
ory allow us to combine aleatory and epistemic uncertainty in a
straightforward way without any assumptions [1]. Due to the
above advantages, evidence theory has been extended into the
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structural reliability analysis in recent years, and some exploratory
work in this area has been reported. Evidence theory was applied
to deal with the uncertainty in rock engineering, based on which
a reliability-based design of tunnels was accomplished [29]. The
use of evidence theory in engineering reliability was investigated
through a simple algebraic function, and the strengths and weak-
nesses of evidence theory were also concluded [30]. Evidence the-
ory and Bayesian approaches were compared in uncertainty
modeling and decision making under epistemic uncertainty [31].
A reliability-based optimization algorithm was constructed based
on evidence theory for multidisciplinary design optimization
(MDO) [32]. The use of several uncertainty modeling techniques
(i.e. probability model, evidence theory, possibility theory, and
interval analysis) was explored and compared through some
benchmarks, and hence a unified framework was provided for
uncertainty propagation analysis of these different methods [33].
Through creating a multi-point approximation at a certain point
on the limit-state surface, a reliability analysis method was pro-
posed for structures with epistemic uncertainty [34,35], which
has made an important contribution to improve its computational
efficiency. Three selected metamodeling techniques for reliability
analysis using evidence theory are compared through six numeri-
cal examples [36]. A reliability-based design optimization (RBDO)
using evidence theory was developed based on a gradient projec-
tion technique [37]. A semi-analytic approach [38] and a sam-
pling-based approach [39] were developed for sensitivity analysis
of the uncertainty propagation problems using evidence theory.
An evidence-based design optimization (EBDO) method was pro-
posed, which can quickly identify the vicinity of the optimal point
and also the active constraints [40]. By combining evidence theory
and conventional probability model, a reliability analysis method
was proposed for epistemic and aleatory mixed uncertainties
[41]. A RBDO method was also formulated based on evidence the-
ory and interval analysis technique, and it was applied to the de-
sign of a pressure vessel [42].

Though some important progresses have been made in the
above work, presently evidence theory has been barely used in
complex engineering problems. One main reason is its high com-
putational cost, as indicated in [35]. Unlike the probability density
function (PDF) in probability model and the membership function
in fuzzy sets, the uncertainty is propagated through a discrete basic
probability assignment by using evidence theory, which is gener-
ally described by a series of discontinuous intervals rather than
an explicit function. Thus the expensive computational cost might
be inevitable for a multidimensional problem when using the evi-
dence theory to conduct reliability analysis. So far, some numerical
methods [34–36] have been developed to improve the computa-
tional efficiency. For these methods, a sampling center on the lim-
it-state function is firstly obtained by an optimization algorithm
and based on which a response surface is constructed to calculate
the reliability interval. Thus, in this paper, we refer to this kind of
methods as the response surface reliability analysis method based
on a sampling center from optimization (RSRO). However, it seems
not always an easy job to provide satisfied reliability analysis re-
sults using the RSRO method. Because the reliability analysis accu-
racy of this method is significantly influenced by the basic
probability assignment for each parameter. Therefore, to improve
the applicability of evidence theory, it seems necessary to develop
some new reliability analysis methods with high efficiency, fine
robustness and also strong adaptibility.

This paper aims to develop a new reliability analysis method for
structures with epistemic uncertainty, in which a concept of most
probable focal element is proposed and based on it the computa-
tional cost of reliability analysis can be significantly reduced. The
remainder of this paper is organized as follows. Some basic concep-
tions for evidence theory are introduced in Section 2. A reliability

analysis procedure using evidence theory is given in Section 3.
An efficient algorithm is formulated to compute the reliability
interval in Section 4. Three numerical examples are investigated
in Section 5 and some conclusions are finally summarized in
Section 6.

2. Basic conceptions of evidence theory

Evidence theory was proposed by Dempster and Shafer [20] and
its main concept is that our knowledge on a given problem can be
inherently imprecise. Thus, an interval composed of the belief mea-
sure (Bel) and the plausibility measure (Pl) is employed to character-
ize the uncertainty of the system response.

Evidence theory starts by defining a frame of discernment (FD)
that is a set of mutually exclusive elementary propositions and it
can be viewed as a finite sample space in probability theory. For in-
stance [35], if FD is given as X = {x1, x2}, then we will have two
mutually exclusive elementary propositions x1 and x2. All the pos-
sible subset propositions of X will form a power set 2X, and for the
above example it has 2X = {£, {x1}, {x2}, {x1, x2}}.

As an important concept in evidence theory, the basic probabil-
ity assignment (BPA) represents the degree of belief for a proposi-
tion. The BPA is assigned through a mapping function
m : 2X ? [0, 1], which should satisfy the following three axioms:

mðAÞP 0 for any A 2 2X ð1Þ

mð£Þ ¼ 0 ð2Þ
X
A22X

mðAÞ ¼ 1 ð3Þ

where m(A) refers to the BPA corresponding to the event A and it
characterizes the amount of ‘‘likelihood’’ that can be assigned to A
but to no proper subset of A.

Sometimes the available evidence may come from different
sources, and such bodies of evidence can be aggregated using exist-
ing rules of combination. Dempster’ rule is the most popular rule
for combination, and for two BPAs m1 and m2 the combined evi-
dence can be calculated as follows [20]:

mðAÞ ¼
P

B\C¼A m1ðBÞm2ðCÞ
1� K

for A – 0 ð4Þ

where

K ¼
X

B\C¼0

m1ðBÞm2ðCÞ ð5Þ

K represents the total conflict between the two independent
sources or experts, hence Dempster’s rule is generally appropriate
for evidence with relatively small amounts of conflict. When there
is severe or total contradiction among the evidence from different
sources, some modified versions [22,24] of Dempster’s rule can be
used.

For the lack of information, generally it cannot provide a deter-
ministic value for a proposition A as in the probability theory, but
only an interval [Bel(A), Pl(A)]. The lower bound 0 6 BelðAÞ 6 1 and
the upper bound 0 6 PlðAÞ 6 1 are called the belief measure and
the plausibility measure, respectively, and they are defined as
below:

BelðAÞ ¼
X
C # A

mðCÞ ð6Þ

PlðAÞ ¼
X

C\A–£

mðCÞ ð7Þ

where Bel(A) is the summary of all the BPAs of propositions that to-
tally agree with the proposition A, and Pl(A) is the summary of all

2 C. Jiang et al. / Computers and Structures 129 (2013) 1–12



Download English Version:

https://daneshyari.com/en/article/509820

Download Persian Version:

https://daneshyari.com/article/509820

Daneshyari.com

https://daneshyari.com/en/article/509820
https://daneshyari.com/article/509820
https://daneshyari.com

