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a b s t r a c t

Every model presents an approximation of reality and thus modeling inevitably implies
model risk. We quantify model risk in a non-parametric way, i.e., in terms of the diver-
gence from a so-called nominal model. Worst-case risk is defined as the maximal risk
among all models within a given divergence ball. We derive several new results on how
different divergence measures affect the worst case. Moreover, we present a novel,
empirical way built on model confidence sets (MCS) for choosing the radius of the
divergence ball around the nominal model, i.e., for calibrating the amount of model risk.
We demonstrate the implications of heavy-tailed risks for the choice of the divergence
measure and the empirical divergence estimation. For heavy-tailed risks, the simulation of
the worst-case distribution is numerically intricate. We present a Sequential Monte Carlo
algorithm which is suitable for this task. An extended practical example, assessing the
robustness of a hedging strategy, illustrates our approach.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Financial market crises, increasingly complex product designs, and demanding regulatory rules highlight the importance
of an efficient and effective risk management. At the core of every risk management process is the qualitative and quan-
titative assessment of outstanding risks. However, risk management is not riskless in itself. Any quantitative risk assessment
must rely on modeling assumptions and is thus prone to model risk. No risk management process can afford to ignore
uncertainties about models and their parameters. Therefore, a reliable risk management process must also aim at revealing
and quantifying these risks. This is the main goal of this paper.

Our paper belongs to the literature which incorporates the “divergence approach” to model-robustness into financial risk
management (Friedman, 2002b; Glasserman and Xu, 2014; Breuer and Csiszár, 2012; Ben-Tal et al., 2013). This approach
originates from the operations research and control literature, e.g. Whittle (1990). To economists it is best known through
the work of Hansen, Sargent and coauthors in macroeconomics, see e.g. Hansen and Sargent (2011).1 The idea behind this
“divergence approach” is to assess worst-case values of target quantities by perturbing a nominal/reference model in a non-
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parametric way. Concretely, the worst case is taken over all alternative models whose divergence (in some predetermined
sense) from the nominal model lies within a given radius. Robust decision making can thus be interpreted as a two-player
game between the decision maker and a fictitious adversary who tries to harm him as much as possible by manipulating the
model – within the confines of a known upper bound on model risk.

Our main objective is to give risk-takers a guidance for assessing how much of a threat model risk is to their risk
management process. This is somewhat complimentary to the literature on robust risk measures (Föllmer and Schied, 2011).
Their main aim is to find risk measures which have desirable properties from a regulatory perspective. That is, they focus on
developing robust risk measures rather than on the implementation of a robust risk management process.

The following two questions are the focal points of the previous literature: (1) Given a nominal model, a divergence
measure and a target quantity, how can we explicitly characterize the worst-case value of the target quantity? (2) How does
the answer to question (1) influence optimal decisions? The present paper centers around three questions which inevitably
arise if one wishes to implement the robustness approach in practice: (3) How does the choice of the divergence measure
influence the worst-case analysis? (4) How can we meaningfully bound the amount of model risk by estimating the
divergence between our model and the “true” data-generating process? (5) How can we calculate worst-case quantities in a
numerically reliable way? In particular, one of our main goals is simply to highlight the problems that arise when making
the divergence approach to model risk operational. While we provide a complete set of solutions to these problems, we are
well aware that any reader will find some of these solutions more convincing than others.

There are good answers to questions (1) and (2) in the literature. For this reason, we build on previous results for
question (1), e.g. Ben-Tal et al. (2013) and Breuer and Csiszár (2013). For simplicity, we abstract from issues of optimal
control, and thus from question (2), and concentrate on the assessment of worst-case risk. In a sense, question (2) is the final
question: An answer only becomes truly useful once there are answers to the remaining four questions. Indeed our results
can easily be combined with the good answers to that question found in the literature.2

Question (3) is particularly relevant for the heavy-tailed risks frequently encountered in financial applications. The so-
called f-divergences possess many desirable properties with regard to applications within the robustness approach (Ben-Tal
et al., 2013; Breuer and Csiszár, 2013). However, the impact of the actual choice of f-divergence measure on the set of
potential worst-case distributions has not been studied yet. In the context of model misspecification, this is particularly
important as the nominal model and the true data generating process can differ considerably. Under heavy tails, a “stan-
dard” implementation of the robustness approach, relying on Kullback–Leibler (KL) divergence as a divergence measure,
often leads to infinite worst-case values. For this reason Glasserman and Xu (2014) propose to use polynomial divergences in
heavy-tailed applications. In practice, the choice of the divergence measure, however, influences the worst-case analysis to a
great extent. We show that polynomial divergence places rather strict (but opaque) restrictions on the set of possible worst-
case models. We demonstrate through a number of examples that working with polynomial divergence is essentially
equivalent to postulating that the true risk is not much more heavy-tailed than the nominal model. The essence is that rare
disasters which are an important motivation of any worst-case analysis are excluded from the model uncertainty. Thus, this
postulate is at odds with a robust risk management approach. In addition, the choice of the divergence measure strongly
affects the possibilities for measuring and bounding model risk.

Question (4) is, in a way, the most important one: unless we can convincingly declare an upper bound on model risk, i.e.,
on the divergence between the nominal model and the data, the worst-case is arbitrarily bad – regardless of how well we
can answer questions (1)–(3) and (5). In the literature, the issue of specifying the amount of model risk has largely been
ignored. Exceptions are Hansen and Sargent (2011) and Ben-Tal et al. (2013) who both focus on sampling inaccuracy rather
than model misspecification. For instance, the proposal of Hansen and Sargent (2011) is shaped by the challenges of macro-
economic modeling where a time-series of interest may be observed only once every few months. In marked contrast, there
is an abundance of data in many financial applications. Indeed, there is by now something of a dichotomy in financial
modeling: there are models which are good at mimicking the data (say, sophisticated GARCH models) and there are models
which are tractable enough to be preferred as a back-up for decisions (say, the Black–Scholes model). Thus, our answer to
(4) is the following: estimate the divergence between the nominal model and the model(s) mimicking the data best in a
statistically reliable way. We propose to define the best model(s) in terms of the model confidence set approach of Hansen
et al. (2011). The divergence can be estimated relying on k-nearest-neighbor-estimators for KL- and polynomial divergences
(Pérez-Cruz, 2008; Póczos and Schneider, 2011). Empirical divergence estimation, however, can only yield reasonable results
if the divergence between the nominal model and the alternative(s) is finite. We show that for natural financial applications
this is violated by polynomial divergence. Therefore, we propose to guarantee the finiteness of worst-case values and
divergence estimators by combining KL-divergence with truncated risk functionals (Cont et al., 2010).

In many challenging financial applications, we have to rely on Monte Carlo methods to obtain the worst-case distribution
and related quantities. A simple numerical scheme which is proposed in previous literature is Importance Sampling (Fri-
deman, 2002a,b; Glasserman and Xu, 2014). However, we demonstrate that Importance Sampling fails to converge in some
natural applications. Thus, the numerical problem at hand is more difficult than one might think, and standard Monte Carlo
algorithms should be treated with caution. Yet there seems to be little point in conducting a worst-case analysis based on a

2 In a way, our answers to the remaining questions can be seen as inevitable steps in the practical implementation of a broad literature in mathematical
finance which studies decision problems under robustness, see e.g., Bordigoni et al. (2007).
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