
A comparison of programming languages in macroeconomics

S. Borağan Aruoba a, Jesús Fernández-Villaverde b

a University of Maryland, United States
b University of Pennsylvania, NBER and CEPR, United States

a r t i c l e i n f o

Article history:
Received 12 May 2015
Accepted 15 May 2015
Available online 22 May 2015

JEL classification:
C63
C68
E37

Keywords:
Dynamic equilibrium economies
Computational methods
Programming languages

a b s t r a c t

We solve the stochastic neoclassical growth model, the workhorse of modern macro-
economics, using Cþþ14, Fortran 2008, Java, Julia, Python, Matlab, Mathema-
tica, and R. We implement the same algorithm, value function iteration, in each of the
languages. We report the execution times of the codes in a Mac and in a Windows

computer and briefly comment on the strengths and weaknesses of each language.
& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Computation has become a central tool in economics. From the solution of dynamic equilibrium models in
macroeconomics or industrial organization, to the characterization of equilibria in game theory, or in estimation by
simulation, economists spend a considerable amount of their time in coding and running fairly sophisticated software. And
while some effort has been focused on the comparison of different algorithms for the solution of common problems in
economics (see, for instance, Aruoba et al., 2006), there has been little formal comparison of programming languages. This is
surprising because there is an ever-growing variety of programming languages and economists are often puzzled about
which language is best suited to their needs.1 Instead of a suite of benchmarks, researchers must rely on personal
experimentation or on “folk wisdom.”

In this paper, we take a first step at correcting this unfortunate situation. The target audience for our results is younger
economists (graduate students, junior faculty) or researchers who have used the computer less often in the past for
numerical analysis and who are looking for guideposts in their first incursions into computation. We focus on a
macroeconomic application but we hope that much of our conclusions and insights carry over to other fields such as
industrial organization or labor economics, among others.

We solve the stochastic neoclassical growth model, the workhorse of modern macroeconomics, using Cþþ , Fortran,
Java, Julia, Python, Matlab, Mathematica, and R. We implement the same algorithm, value function iteration, in each
of the languages, and measure the execution time of the codes in a Mac and in a Windows computer. The advantage of our

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jedc

Journal of Economic Dynamics & Control

http://dx.doi.org/10.1016/j.jedc.2015.05.009
0165-1889/& 2015 Elsevier B.V. All rights reserved.

E-mail addresses: aruoba@econ.umd.edu (S.B. Aruoba), jesusfv@econ.upenn.edu (J. Fernández-Villaverde).
1 This also stands in contrast to work in other fields, such as Prechelt (2000) and Lubin and Dunning (2013), or web projects, such as The Computer

Language Benchmarks Game (see http://benchmarksgame.alioth.debian.org/).

Journal of Economic Dynamics & Control 58 (2015) 265–273

www.sciencedirect.com/science/journal/01651889
www.elsevier.com/locate/jedc
http://dx.doi.org/10.1016/j.jedc.2015.05.009
http://dx.doi.org/10.1016/j.jedc.2015.05.009
http://dx.doi.org/10.1016/j.jedc.2015.05.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2015.05.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2015.05.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2015.05.009&domain=pdf
mailto:aruoba@econ.umd.edu
mailto:jesusfv@econ.upenn.edu
http://benchmarksgame.alioth.debian.org/
http://dx.doi.org/10.1016/j.jedc.2015.05.009
http://dx.doi.org/10.1016/j.jedc.2015.05.009


algorithm, value function iteration, is that it is “representative” of many economic computations: expensive loops, large
matrices to store in memory, and so on. Thus, while our investigation does not entail a full suite of benchmarks, both our
model and our solution method are among the best available choices for our investigation. In addition, our two machines, a
Mac and a Windows computer, are perhaps the two most popular environments for software development for economists.

The key take-aways of our analysis are as follows:

1. Cþþ and Fortran are considerably faster than any other alternative, although one needs to be careful with the choice
of compiler. The many other strengths of Cþþ in terms of capabilities (full object orientation, template meta-
programming, lambda functions, large user base) make it an attractive language for graduate students to learn. On the
other hand, Fortran is simple and compact – and, thus, relatively easy to learn – and it can take advantage of large
amounts of legacy code.

2. Julia delivers outstanding performance, taking only about 2.5 times longer to execute than Cþþ , while Matlab takes
about 10 times longer. Given how close Julia's syntax is to Matlab's and the fact that it is open-source and that the
language has been designed from the scratch for easy parallelization, many economists may want to learn more about it.
However, Julia's standard is still evolving (causing potential backward incompatibilities in the future) and there are
only a few libraries for it at the moment.

3. While Python and R are popular in economics, they do not performwell in our application, taking 44 to 491 times longer
to execute than Cþþ .

4. Hybrid programming and special approaches can deliver considerable speed-ups. For example, when combined with Mex

files, Matlab takes only about 1.5 times longer to execute than Cþþ and when combined with Rcpp, R takes about 4
times longer to execute. Similar numbers hold for Numba (a just-in-time compiler for Python that uses decorators) and
Cython (a static compiler for writing C extensions for Python) in the Python ecosystem. While Mex files were faster, we
found Rcpp to be elegant and easy to use. These numbers suggest that a researcher can use the friendly environment of
Matlab or R for everyday tasks (data handling, plots, etc.) and rely on Mex files or Rcpp for the heavy computations,
especially those involving loops.

5. The baseline version of our algorithm in Mathematica is very slow, unless we undertake a considerable rewriting of the
code to take advantage of the peculiarities of the language.

Some could argue that our results are not surprising as they coincide with the guesses of an experienced programmer.
But we regard this comment as a point of strength, not weakness. It is a validation that our exercise was conducted under
reasonably fair conditions. We do not seek to overturn the experience of knowledgeable programmers, but to formalize such
experience under well-described and explicitly controlled conditions and to report the information to others.

We also present some brief comments on the difficulty of implementation of the algorithm in each language and on the
additional tools (integrated development environments or IDEs, debuggers, etc.) existing for each language. While this is a
treacherous and inherently subjective exercise, perhaps our pointers may be informative for some readers. Since the codes
are posted at our github repository, the reader can gauge our results and remarks for himself.2

The rest of the paper is structured as follows. First, in Section 2, we introduce our application and algorithm. In Section 3
we motivate our selection of programming languages. In Section 4, we report our results. Section 5 concludes.

2. The stochastic neoclassical growth model

For our exercise, we pick the stochastic neoclassical growth model, the foundation of much work in macroeconomics. We
solve the model with value function iteration. In that way, we compare programming languages for their ability to handle a
task such as value function iteration that appears everywhere in economics and within a well-understood economic
environment.

In this model, a social planner picks a sequence of consumption ct and capital ktþ1 to solve

max
ct ;kt þ 1f g

E0
X1

t ¼ 0

1�βð Þβt logct ð1Þ

where E0 is the conditional expectation operation, β the discount factor, and the resource constraint is given by
ctþktþ1 ¼ ztk

α
t þð1�δÞkt , where productivity zt takes values in a set of discrete points z1;…; znf g that evolve according to

a Markov transition matrix Π. The initial conditions, k0 and z0, are given. While, in the interest of space, we have written the
model in terms of the problem of a social planner, this is not required and we could deal, instead, with a competitive
equilibrium.

For our calibration, we pick δ¼ 1, which implies that the model has a closed-form solution ktþ1 ¼ αβztk
α
t and

ct ¼ 1�αβð Þztkαt : This will allow us to assess the accuracy of the solution we compute. Then, we are only left with the
need to choose values for β, α, and the process for zt . But since δ¼ 1 is unrealistic, instead of targeting explicit moments of
the data, we just pick conventional values for these parameters and processes. For β we pick 0.95, 1/3 for α, and for zt we

2 https://github.com/jesusfv/Comparison-Programming-Languages-Economics

S.B. Aruoba, J. Fernández-Villaverde / Journal of Economic Dynamics & Control 58 (2015) 265–273266

https://github.com/jesusfv/Comparison-Programming-Languages-Economics


Download English Version:

https://daneshyari.com/en/article/5098274

Download Persian Version:

https://daneshyari.com/article/5098274

Daneshyari.com

https://daneshyari.com/en/article/5098274
https://daneshyari.com/article/5098274
https://daneshyari.com

