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a b s t r a c t

A new explicit time integration scheme is presented for the solution of wave propagation problems. The
method is designed to have small solution errors in the frequency range that can spatially be represented
and to cut out high spurious frequencies. The proposed explicit scheme is second-order accurate for sys-
tems with and without damping, even when used with a non-diagonal damping matrix. The stability,
accuracy and numerical dispersion are analyzed, and solutions to problems are given that illustrate
the performance of the scheme.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Direct time integration is widely used in finite element solu-
tions of structural dynamics and transient wave propagation prob-
lems, and schemes can be categorized into two groups: explicit and
implicit methods. A time integration method is implicit if the solu-
tion procedure requires the factorization of an ‘effective stiffness’
matrix and is explicit otherwise [1–3].

In general, each type of integration has its own advantages and
disadvantages. Implicit methods require a much larger computa-
tional effort per time step when compared with explicit methods.
However, implicit methods can be designed to have unconditional
stability, in linear analysis, so that the time step size can be se-
lected solely based on the characteristics of the problem to be
solved. On the other hand, explicit methods when using a diagonal
mass matrix may require only vector calculations. Hence, the com-
putational cost per time step is much lower. However, an explicit
method can only be conditionally stable. Therefore, explicit meth-
ods may be effective when the time step size required by the sta-
bility limit is about the same as the time step size needed to
describe the physical problem, and this is frequently the case in
wave propagation analyses [1–6].

Accurate finite element solutions of wave propagations are dif-
ficult to obtain. Numerical errors due to the spatial and time dis-
cretizations resulting in artificial period elongations and
amplitude decays, seen as numerical dispersions and dissipations,

often render finite element solutions of wave propagation prob-
lems to be quite inaccurate [1,6–10]. In particular, large errors in
just the few highest frequency modes contained in the mesh
shown as spurious oscillations can severely impair the accuracy
of the solution. These spurious oscillations may increase in time
since the dispersion and dissipation errors accumulate as the
waves propagate.

Much research effort, following different approaches, has been
focused on reducing the dispersion and dissipation errors. Of
course, to reduce the errors from the spatial discretization, high-
er-order spatial discretizations can be employed [11–16]. How-
ever, the use of high-order elements can be computationally
expensive and may not have the generality as does the use of the
traditional finite element procedures employing low-order ele-
ments. Linear combinations of consistent and lumped mass matri-
ces [17–21] or modified spatial integration rules for evaluations of
mass and stiffness matrices [22–24] may also be used to obtain
better solution accuracy. However, these schemes are different
from those commonly used in structural dynamics and do not lead
to a general solution procedure. Errors due to the spurious oscilla-
tions can also be reduced by the use of filtering [24–26] for specific
points in space and time. These schemes can be valuable to obtain
improved solutions for a number of spatial and time points but in
engineering practice, accurate solutions are generally sought over
the complete problem geometry and all time considered.

Many direct time integration schemes introduce numerical dis-
sipation to improve the solution by suppressing the high frequency
spurious modes [1,2,27,28]. However, it is difficult to obtain an
effective scheme, since the numerical dissipation should be large
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enough to suppress the high frequency spurious modes, while at
the same time keeping good accuracy in the low frequency modes.
The search for an effective such scheme is very important since, in
engineering practice, such method could be used for structural
dynamics and wave propagation problems in a uniform manner.

Among implicit methods, the Bathe method [29–31] has been
shown to result in remarkably accurate solutions by suppressing
the high frequency spurious modes [6]. The property of this
scheme to ‘cut out’ high frequency modes that cannot be spatially
resolved and to integrate those modes accurately that can be spa-
tially resolved results into relatively small dispersion error [6,32].

Considering explicit methods, the central difference method is
still a widely used scheme. It has the largest time step stability lim-
it of any second-order accurate explicit method [33,34]. However,
the central difference method requires a matrix factorization for
systems with a non-diagonal damping matrix, a shortcoming that
has been addressed, see e.g. Refs. [35,36], and in particular, since
the method is a non-dissipative scheme, the solution accuracy
can be severely ruined by the dispersion errors in the high fre-
quency modes.

The development of dissipative explicit methods has been much
pursued [37]. Schemes have been presented by Newmark [38],

Fig. 1. Proposed scheme for various values of p.
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