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a b s t r a c t

This paper provides a closed-form solution for the price-dividend ratio in a standard asset
pricing model with stochastic volatility. The growth rate of the endowment is a first-order
Gaussian autoregression, while the stochastic volatility innovations can be drawn from
any distribution for which the moment-generating function exists. The solution is useful
in allowing comparisons among numerical methods used to approximate the nontrivial
closed form. The closed-form solution reveals that, when using perturbation methods
around the deterministic steady state, the approximate solution needs to be sixth-order
accurate in order for the parameter capturing the conditional standard deviation of the
stochastic volatility process to be present.

Published by Elsevier B.V.

1. Introduction

Stochastic volatility has become an important feature of macroeconomic models that seek to explain both stylized
business cycle and asset pricing facts. Since closed-form solutions elude richer macroeconomic models, various numerical
methods have been proposed to provide an approximated solution. The contribution of this paper is to present a simple
(asset pricing) stochastic volatility model in which an exact solution (for the price-dividend ratio) exists, which may serve as
a benchmark from which to compare alternative numerical approximation methods.

Burnside (1998) provided an exact solution for the Lucas (1978) asset pricing model with Gaussian, autoregressive
dividend growth shocks and time-separable constant relative risk-aversion (CRRA) preferences.1 Bidarkota and McCulloch
(2003) and Tsionas (2003) extended Burnside's solution to shocks with stable distributions and shocks with well-defined
moment-generating functions (MGFs), respectively, while Chen et al. (2008) and Collard et al. (2006) extended it to the case
with non-time-separable preferences through habits in consumption.2 In each case, the solutions provide a useful
benchmark against which to test numerical solution algorithms. This paper follows in that tradition. It extends the
Burnside model by adding stochastic volatility to the dividend growth process.

Since Bansal and Yaron (2004) showed the importance of stochastic volatility to account for stylized asset pricing facts,
the use of stochastic volatility has become a widespread addition to standard business cycle models. Yet, even beside the
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demand for business cycle models to match stylized asset pricing facts, there is a growing use of stochastic volatility in
macromodelling. Stock and Watson (2002) and Sims and Zha (2006) are prominent examples arguing that time-varying
volatility is important in accounting for the dynamics of U.S. aggregate data. Among Dynamic Stochastic General Equilibrium
(DSGE) researchers, stochastic volatility is being put to many applications: Bloom et al. (2007) consider the role of time-
varying uncertainty for investment dynamics, Justiniano and Primiceri (2008) investigate the sources of the Great
Moderation, and Fernández-Villaverde et al. (2011) study the effects of stochastic volatility in fiscal shocks on economic
activity, to name just a few.

Because of the increasing importance of stochastic volatility, which naturally adds additional nonlinearity into the
solution of models, a growing literature has been testing how different numerical solution methods that solve equilibrium
models with stochastic volatility perform. Caldara et al. (2012), for example, compare perturbation methods (of second and
third order), Chebyshev polynomials, and value function iteration in a real business cycle model with stochastic volatility.

In this paper, I show the exact solution for the price-dividend ratio of a simple asset pricing model as a nontrivial
function of the model's two state variables, the current dividend growth rate and the current volatility of the dividend
growth process.3 Innovations to the dividend growth rate are drawn from a Gaussian distribution. Innovations to the
stochastic volatility process can be drawn from any distribution for which the MGF exists. For much of the paper, I follow
Bansal and Yaron (2004) and assume Gaussian shocks for the stochastic volatility innovations. However, a gamma
distribution is potentially appealing because it ensures that the realizations of the stochastic volatility process are strictly
nonnegative and because it displays skewness and kurtosis.

The closed-form solution has the following properties: First, the price-dividend ratio increases when the volatility of
dividend growth increases, as well as when the volatility of the stochastic volatility process increases. Second, the sensitivity
of the price-dividend ratio to a change in the volatility state is increasing in the persistence of the stochastic volatility
process. I derive an expression for the unconditional mean of the price-dividend process, as well as several other endo-
genous objects of interest, such as the risk-free rate and the conditional equity risk premium. Since the closed-form solution
for the price-dividend ratio takes the form of an infinite sum, I provide parameter conditions under which the price-
dividend ratio (and its unconditional mean) are finite. I also show where to truncate the infinite summation when
calculating the solution numerically to ensure that the truncation error is no larger than a given value with a given
probability.

Finally, I show how two alternative low-order polynomial approximation techniques perform in terms of numerical
accuracy: (1) a first-order approximation following Campbell and Shiller (1988) that exploits the normality of the stochastic
processes; and (2) the perturbation method around a deterministic steady state, popular among macro-DSGE researchers. I
find two results of note: First, a fourth-order perturbation is required to generate a similar order of accuracy close to the
steady state as the approximation that exploits the normality of the stochastic processes. Second, a sixth-order perturbation
approximation is required for the parameter capturing the conditional standard deviation of the stochastic volatility process
to show up in the approximated solution.

The rest of the paper is structured as follows. Section 2 presents the basic asset pricing model with stochastic volatility,
and Section 3 presents the general closed-form solution. Section 4 applies the model and further discusses its uses. Section 5
concludes. The appendix provides derivations of the paper's key results, while an extensive online appendix provides
additional detail, describes a variant of the basic model, and tests the model's asset pricing implications.

2. The asset pricing model

There is a representative agent who maximizes the expected discounted stream of utility

E0

X1
t ¼ 0

βt c
1�γ
t

1�γ
; ð1Þ

subject to the budget constraint:

ctþstþ1ptr ðdtþptÞst ; ð2Þ
where Et is the mathematical expectations operator conditional on the time t information set, ct is consumption, and st
denotes units of an asset whose price at date t is pt with dividends dt. The discount factor is βA ð0;1Þ, and the coefficient of
relative risk aversion is γ40 and γa1. The growth rate of dividends, denoted xt � logðdt=dt�1Þ, is assumed to follow a
Gaussian ARð1Þ process:

xt ¼ xþρðxt�1�xÞþ ffiffiffiffiffi
ηt

p
εt ; ð3Þ

where x is the steady-state growth rate of dividends, ρAð�1;1Þ is the persistence parameter, and εt is a sequence of
independently and identically distributed (i.i.d.) innovations from the standard normal distribution. The innovations to xt
are scaled by

ffiffiffiffiffiηtp
. ηt is therefore the conditional variance of dividend growth and is time varying. In particular, it follows an

3 The model features CRRA preferences and not recursive preferences as in Bansal and Yaron (2004), which means that the model does not solve the
risk-free rate and equity premium puzzles (see Mehra and Prescott, 1985; Weil, 1989). However, this feature does not diminish the model's usefulness as a
testing ground for numerical solution methods interested in capturing the effects of stochastic volatility.
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