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a b s t r a c t

The complexity of state-of-the-art tools for shell optimization may limit their applicability in common
practice. We propose two shape parametrizations, inserted into a robust and simple procedure, based
on linear finite elements and gradient-based optimization. We represent the mid-surface by triangular
Bézier surface and ad-hoc heuristic functions. The first method allows searching for a general shape, while
in the second one the functions are chosen according to structural and aesthetical criteria. Small number
of design variables ensures efficiency. The procedure is applied to Kresge auditorium at MIT. Both
parametrizations provide satisfactory results, with slightly better performances of Bézier surface
representation.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A shell is a thin-walled structure whose load bearing capability
is almost entirely provided by its shape. The design methodology
that leads to the final shape of shells has experienced a remarkable
change over the time. In the past centuries, the design methodol-
ogy was mainly empirical and based on the tradition, culture,
experience, and knowledge of the designer. Prototypes of the mod-
ern reinforced-concrete (RC) shells, with larger thickness-to-
curvature radius ratios (s/R), are the domes built since the Antiq-
uity to the Renaissance. Prominent examples for their spans
(unsurpassed until the introduction of reinforcements) are the con-
crete dome of the Pantheon in Rome (2nd century AD, s/
R = 1/3.7�1/18) and the double masonry shell of Brunelleschi
Dome in Florence (15th century, s/R = 1/8.5, considering the total
thickness including the interspace). From the end of 19th century
to the 1960s, impressive progresses in the conceptual design of
shells were made by master builders like F. Dischinger (1887–
1953), P.L. Nervi (1891–1979), E. Torroja (1899–1961), A. Tedesko
(1903–1994), F. Candela (1910–1997), to mention a few. Their out-
standing structures were the result of a deep understanding of the
interrelation between geometry and statics, the former assigned a
priori and often described by analytical functions [1–3].

If the shape of the shell is not assigned a priori, an inverse prob-
lem arises, consisting in finding the geometry corresponding to a

membrane-dominated stress-state under assigned loads [4,5]. To
this aim, two main experimental methods were used: (i) the hang-
ing model and (ii) the pre-stressed soap-film analogy. These two
methods are usually referred to as ‘form finding’ methods [3].

The hanging-model method consists in suspending one- or two-
dimensional objects with no bending and compressive stiffness (a
cable, a cable net, or a fabric), so that they undergo a purely tensile
stress-state. When the desired shape is reached, the geometry is
‘frozen’ and inverted, so that a bending-free, compressive stress-
state is obtained. For the plane problem of one-dimensional hang-
ing cables, the method is known as ‘catenary method’ and was
probably already used in the design of ancient structures, such as
the Arch of Taq-i Kisra in Ctesiphon (6th century AD). The mathe-
matical description of the corresponding catenary curve was firstly
studied by Robert Hooke (1635–1703), and applied to a number of
cases, such as the design of St. Paul’s Cathedral in London by C.
Wren (1632–1723) and the strengthening by G. Poleni (1673–
1781) of St.-Peter’s Dome in Rome. The three-dimensional case of
hanging chain-nets might have been adopted already in Middle
Ages in the design of some gothic churches, as conjectured in [6],
and was systematically used by A. Gaudì (1852–1926) [7–9]. Since
the 1960s, the principle of hanging models has been intensively
used by H. Isler (1926–2009) to design elegant ultra-thin RC shell
structures [10], with spans up to 40 m and s/R as low as 1/1000.

The soap-film method is used for form-finding of tensile struc-
tures or very shallow shells, for which the normal vector to the sur-
face is almost vertical, i.e. the difference between the uniform
vertical load and a surface pressure is negligible [11].
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The extraordinary reliability and long-term performances of
shell structures designed through the two form-finding meth-
ods prove their efficiency. Nevertheless, they present some limita-
tions, such as the impossibility of accounting for multiple load
conditions, variable thickness, and other not properly structural
aspects.

Nowadays, form-finding physical approaches are replaced by
numerical simulations through the finite element (FE) method,
mostly by using shell elements [12]. However, these approaches
may present numerical issues, which justify the large research
effort of the last decades. In the hanging method the isotropy/ani-
sotropy of the material and the value of its elastic moduli affect the
results; the design variables are not obviously defined; and the
solution may be not unique. The numerical translation of the
soap-film analogy leads to systemmatrix singularities, when nodal
displacements occur in the plane tangential to the shell mid-
surface [13]; this problem can be circumvented by the updated ref-
erence strategy [13,14], whose capability of facing incompatible
stress states is discussed in [15,16]. Finally, both form-finding
methods cannot consider, beside the shape, other structural (opti-
mized variable thickness, stability, modal properties, etc.) and non-
structural (e.g., costs) aspects.

These drawbacks are overcome by the application of structural-
optimization methods [13,17–19]. Structural optimization offers a
powerful tool to handle complicated problems and it has been
applied to a larger variety of structural typologies. The initial
numerical applications dealt with latticed and framed structures,
modelled through truss and beam elements. For a review of the
methods developed between 1960s and 1980s see [20]. For shell
structures, a comparative review of optimization methods, includ-
ing their relationships with form-finding methods, is given in
[3,16]. Incidentally, also the physical intuition of the form-finding
methods contains the concept of optimization, in that the shape
of a hanging model or of a soap-film corresponds to a minimum
of the total potential energy of the associated mechanical system.
Therefore, the optimization methods can be regarded to as a gen-
eralization of the form-finding ones.

The first studies addressing the optimum shape of a structure
were performed through ad-hoc computer codes [21,22]. More
recently, the solution of the structural part has been achieved by
commercial software [23–26] and the combination of structural
FE solvers with commercial optimization packages results in an
efficient tool [27]. Some advanced FE programs also integrate an
optimizer [28,29].

A structural optimization problem is made up of three parts: (1)
the geometrical part, where the shape of the shell is parametrically
described, providing the design variables; (2) the mechanical part,
where the most suitable objective function and possible con-
straints are chosen; and (3) the mathematical part, where the min-
imization problem is stated.

The present work uses structural-optimization methods and
focuses on the first part, i.e. the geometrical description of the
geometry.

We study the well-known Kresge auditorium of MIT, a triangu-
lar shell stiffened by edge arches, for which the benefits of shape
optimization can be easily expected. The shell has in fact a spher-
ical geometry and would undergo significant bending stresses, if
the three stiffening arches were removed, as we do in the opti-
mization process. The Kresge auditorium is widely studied in the
literature, so that a comparison of the optimization results can
be made.

We use a methodology based on structural optimization by rep-
resenting the geometry of the mid-surface through two different
approaches.

The first one is completely general and allows to search for a
large variety of shapes. It consists in an original application of

Bézier surface, where triangular patches are used instead of the
more common quadrilateral ones [3,13].

The second one is a case-dependent approach that makes use of
specific parametric functions, chosen to mitigate the bending stres-
ses arising at the shell boundaries once the edge arches are
removed. These functions are also chosen to satisfy some aesthetic
criteria, a task which would be more difficult to achieve by the pre-
vious, fully free-form approach. The use of ad-hoc heuristic func-
tions has the further advantage to control the shape through a
very low number of design variables.

The mechanical model is treated by standard linear-elastic FE
analysis. The optimization problem is stated in a classical form
and numerically solved by a constrained gradient-based minimiza-
tion algorithm. Over the last decades, new optimization algorithms
based on stochastic search methods have been developed, such as
Differential Evolution (DE) algorithms, Genetic Algorithms (GA),
and Particle Swarm Optimization (PSO) algorithms (for a review
see [30]). The efficiency of these algorithms for structural opti-
mization problems is investigated in [31–37].

For problems involving a large number of design variables, evo-
lutionary algorithms are generally more suitable than gradient-
based methods (e.g., gradient information and sensitivity analysis
are not required), while the latter may guarantee a better conver-
gence rate for a reduced number of design variables. In this work,
the gradient-based method turns out to be suitable for our opti-
mization problem.

The overall procedure is based on simple tools (linear static
analysis and a simple optimization algorithm). Moreover, espe-
cially in the case in which ad-hoc functions are used to describe
the geometry, the number of design variables is reduced. In both
cases, the resulting shape is very similar to the one obtained
through more sophisticated methods, which are not promptly
available to average designers in the engineering practice.

This work is organized as follows: in Section 2, the structural
optimization problem is formulated and the two surface represen-
tations are introduced. In Section 3, we apply the optimization pro-
cedure to the Kresge auditorium at MIT. Results and comparisons
with the initial spherical shape are presented in Section 4. Finally,
the main conclusions are drawn in Section 5.

2. Structural optimization

The general formulation of the problem is

minimize
s2D

f ðsÞ
subjected to geq

i ðsÞ ¼ 0; i ¼ 1; . . . ;Neq;

gin
j ðsÞ 6 0; j ¼ 1; . . . ;Nin;

ð1Þ

where f : Rn ! R is the objective function, s 2 Rn is the
n-dimensional design variable vector, geq

i and gin
j are the ith equality

and jth inequality constraints.
The choice of the objective function depends on the purpose of

the optimization procedure: some examples are the cost, the reli-
ability, the stiffness, the weight, the first fundamental period, the
so-called ‘volumetric displacement’ (i.e., the integral over the sur-
face of the product of thickness and displacements, [28]), the stress
levelling. In our case, the aim of the optimization is a bending-free
state of stresses. This is achieved by minimizing the strain energy,
because it is largely due to flexural behavior (e.g., [28]).

For a general structural optimization problem, the design vari-
ables can be geometry parameters (e.g. variables controlling the
shape), structural properties (e.g. cross-section area, thickness,
inertia moment), topological parameters (e.g., presence of holes
controlled by an element density function in [0,1] as in [27]),
and the material properties. In the case of shell optimization
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