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a b s t r a c t

This paper proposes a kinematic model for sandwich plates and shells, utilising a novel zigzag function
that is effective for symmetric and asymmetric cross-sections, and employing a piecewise
through-thickness distribution of the transverse shear strain. The proposed model is extended to large
displacement analysis using a co-rotational framework, where a 2D local shell system is proposed for
the direct coupling of additional zigzag parameters. A 9-noded co-rotational shell element is developed
based on the proposed approach, which utilises the MITC method for overcoming locking effects. Several
linear/nonlinear analysis examples of sandwich structures demonstrate the effectiveness of the proposed
approach.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Sandwich structures consisting of two stiff outer layers bonded
to a soft core have been widely adopted in many engineering appli-
cations. Due to the large face-to-core stiffness ratio, such structures
are characterised by a zigzag form of displacements. The classical
lamination theory (CLT) and the first-order shear deformation the-
ory (FSDT) [1], representing extensions of the Kirchhoff and Reiss-
ner–Mindlin plate theories to the laminate, cannot accurately
predict the response of sandwich structures due to the assumption
of linear variation in displacement over the thickness. Higher-order
shear deformation theories (HSDTs) [2,3] improve the accuracy of
the global response by introducing additional variables with
higher-order out-of-plane z expansions of the displacement fields,
but these z expansions, which are defined at the multi-layer level,
cannot describe the discontinuity associated with the variation of
mechanical properties through the thickness.

There are two main approaches that include the zigzag effect
into 2D modelling: layer-wise (LW) description and equivalent sin-
gle layer (ESL) description with the inclusion of Murakami’s zigzag
function [4]. LW models [5–7] regard each layer as an independent
plate or shell, and employ any of the CLT, FSDT and HSDTs at the
layer level. The compatibility conditions are satisfied by imposing
displacement constraints at laminar interfaces. Nevertheless, the
number of displacement variables in LW models depends on the

number of constitutive layers, though the number of displacement
fields can be reduced by also enforcing the continuity of transverse
stresses at laminar interfaces [8–14]. These methods are typically
labelled as zigzag theories.

The ESL description considers the zigzag effect with relative
ease, where a piecewise linear zigzag function, such as the one first
proposed by Murakami [10], is added to the FSDT and HSDTs
[11,12]. Approaches in this category are denoted as ‘EDZ’ models
(where ‘E’ stands for the ESL description, ‘D’ stands for the employ-
ment of principle of virtual displacements, and ‘Z’ indicates the
inclusion of a zigzag function) [11]. The EDZ models improve the
results of FSDT and HSDTs with relative ease, and the degrees of
freedom (DOFs) of EDZ models are independent of the number of
layers. On the basis of the EDZ models, a group of mixed formula-
tions have also been developed, denoted as ‘EMZC’ models (where
‘M’ stands for the mixed formulation, and ‘C’ means the fulfilment
of inter-laminar continuity) [11], where continuous transverse
shear and normal stresses are assumed and Reissner’s variational
principle is employed, thereby achieving the continuity of both dis-
placements and transverse stresses. The EDZ and EMZC models
have been widely used in the analysis of thin-to-thick laminations
as well as sandwich structures [11–15]. It is noted, however, that
the effectiveness of the EDZ and EMZC models relies on the effec-
tiveness of Murakami’s zigzag function (MZZF), which depends fur-
ther on the material properties and thickness of each constitutive
layer as well as the stacking sequence. In plate bending problems
associated with an asymmetrically laminated sandwich plate
[15], it has been shown that higher-order z expansions of
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displacements are required for the EDZ models to achieve suffi-
cient accuracy owing to the ineffectiveness of the MZZF, while Car-
rera [16] suggested that the effectiveness of the MZZF may be
improved with the employment of the mixed assumption. Never-
theless, the ESL models with the inclusion of MZZF provide a con-
venient approach for considering the lamination effects in terms of
accuracy versus the required computational effort, and these mod-
els have also been employed in finite element formulations to anal-
yse sandwich and lamination problems involving geometric
nonlinearity [17–20].

Motivated by Murakami’s work [10], this paper proposes an
efficient three-layered model for the analysis of sandwich plates
and shells. While similar in principle to the EDZ model, an impor-
tant difference is the introduction of a novel zigzag function over
the full plate thickness that is specific to sandwich plates/shells
with a soft core. This enriches the classical Reissner–Mindlin for-
mulation [21,22] by allowing for cross-sectional warping, and sat-
isfies the continuity of displacements at laminar-interfaces a priori
via the assumed zigzag mode. The proposed zigzag function is
shown to provide good accuracy for both symmetric and asymmet-
ric lay-ups, while achieving computational efficiency through the
use of a minimal number of additional zigzag displacement fields.
On the other hand, a piecewise linear–constant–linear distribution
is assumed for the transverse shear strain, which imposes no
constraints on transverse shear stresses but is shown to provide
an accurate representation of the actual distribution without
sacrificing computational efficiency.

In formulating large displacement 2D shell elements for small
strain problems, the relationship between the strain and displace-
ment fields is highly nonlinear and complex if the displacement
fields are referred to a fixed coordinate system, such as in the Total
Lagrangian approach [23,24], where the nonlinear strain terms
arise mainly from the element rigid body rotations. Instead, the
co-rotational approach, which decomposes the element motion
into rigid body and strain-inducing parts via the use of a local
co-rotational system, allows the employment of low-order, even
linear, relationships between the strain and local displacement
fields [25]. In this respect, the co-rotational approach shifts the
focus of geometric nonlinearity from the continuum level to the
discrete nodal level, and it can act as a standard harness around
different local element formulations [26], upgrading such formula-
tions to large displacement analysis with relative ease. In addition,
when laminations are considered, the co-rotational system
provides a reference orientation for the definition of the zigzag
displacement variables which are associated with local cross-
sectional warping only. In this context, co-rotational transforma-
tions of the zigzag displacement variables are avoided in this work
through the introduction of a 2D ‘shell’ coordinate system, which
follows the local co-rotational element system, thus achieving sig-
nificant computational benefits. Further benefits arise in the local
element formulation with the definition of a 2D ‘shell’ coordinate
system that is continuous over the shell structure, where three
such definitions are proposed in this paper. Notwithstanding the
above benefits, it is important to note that the co-rotational
approach offers no particular benefits in large strain problems,
for which a Total Lagrangian approach would be more suited [24].

The application of the proposed sandwich shell model is illus-
trated for a 9-noded shell element [27,28], which employs a bisec-
tor co-rotational system [25] for modelling geometric nonlinearity.
The basic local displacement variables consistent with the Reiss-
ner–Mindlin formulation are related to the global variables accord-
ing to discrete nonlinear co-rotational transformations, while the
additional zigzag displacement variables are defined directly in
the 2D curvilinear shell system. Furthermore, in order to alleviate
membrane and shear locking which arise with conforming
displacement-based shell elements, an assumed strain approach

is considered. Amongst the different assumed strain methods, the
Mixed Interpolation Tensorial Components (MITC) method
[29,30] is widely used to overcome locking, offering a two-level
approximation that samples and interpolates strain components
in a covariant coordinate system at a selection of positions. The
application of the MITC method to a 9-noded shell element has
been shown to yield a much improved element performance
[31–33], thus the MITC approach is utilised herein for each consti-
tutive layer of the 9-noded shell element to overcome locking.

The paper proceeds with presenting the proposed kinematic
description for sandwich shells, the effectiveness of which is then
demonstrate with reference to a 1D linear problem. The enhance-
ments required for large displacement analysis of shells are subse-
quently presented, and the application of the proposed sandwich
shell model is illustrated for a 9-noded co-rotational shell element.
Several linear and nonlinear numerical examples are finally pre-
sented to demonstrate the accuracy and efficiency of the proposed
approach for the analysis of sandwich shell structures with both
symmetric and asymmetric lay-ups.

2. Kinematic description for sandwich shells

A kinematic model is proposed in this section for sandwich
shells, with specific reference to the through-thickness variation
of displacement fields and the transverse shear strains. Fig. 1
depicts the sandwich model for a plate along with the local coordi-
nates, where the x- and y-axes are located at the middle surface
while the z-axis is normal to the plate, and where each layer is
identified by a unique index. It is important to note that while
the kinematic descriptions is initially presented for a plate prob-
lem, it is equally applicable to local formulations of shallow shells,
as elaborate in Section 2.2. Furthermore, through incorporation
within a co-rotational framework, it is also applicable to the non-
linear analysis of general curved shells, as presented in Section 4
and demonstrated by the numerical examples of Section 6.

2.1. Geometry and displacement fields

In this sandwich plate model, a piecewise linear variation of
planar displacements in the z direction is assumed, thus readily
satisfying C0-continuity at laminar interfaces. Accordingly, the
through-thickness distribution of the planar displacements can
be decomposed into four independent displacement modes
KiðzÞ ði ¼ 1 ! 4Þ (Fig. 2), including a constant and a linear mode,
K1 and K2, in accordance with the Reissner–Mindlin kinematic
hypothesis, as well as two zigzag modes, K3 and K4, accounting
for the zigzag effect. K3 and K4 are both orthogonal to the constant
and linear modes while associated with respectively different and
identical rotations of the normal in the two face sheets; these are
expressed as:

K3ðzÞ ¼
âð1Þ3 zþ b̂ð1Þ

3 z 2 ½h1�;h1þ�
âð2Þ3 zþ b̂ð2Þ

3 z 2 ½h2�;h2þ�
âð3Þ3 zþ b̂ð3Þ

3 z 2 ½h3�;h3þ�

8>><>>: ð1Þ

K4ðzÞ ¼
âð1Þ4 zþ b̂ð1Þ

4 z 2 ½h1�;h1þ�
âð2Þ4 zþ b̂ð2Þ

4 z 2 ½h2�;h2þ�
âð3Þ4 zþ b̂ð3Þ

4 z 2 ½h3�;h3þ�

8>><>>: ð2Þ

in which h� and hþ denote the values of z at the bottom and top of
the cross-section, respectively; hk� and hkþ refer to the values of z at

the bottom and top of layer (k), respectively; and expressions of âðkÞ
i

and b̂ðkÞ
i (i = 3, 4) are provided in Appendix A.
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