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a b s t r a c t

This paper describes a procedure for taking into account distributed loads in the calculation of the har-
monic response of a cross-ply laminated circular cylindrical shell using the dynamic stiffness method.
This work is a direct continuation of a previous work concerning isotropic materials. Equivalent loads
are established on element boundaries to determine the response of the system. Therefore, the vibration
analysis is solved with numerical examples in order to determine the performances of this approach. The
method allows reducing both the size of the model and computing time, and ensures higher precision
compared to the finite element method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated composite structures is the subject of much going
research since the middle of 80s. Nowadays, such structures are
frequently used in various engineering applications in the aero-
space, mechanical, marine, and automotive industries. Qatu et al.
[1] have recently published a review on the dynamic analysis of
composite shell structures. General theoretical developments can
be found in the textbook written by Reddy [2] and specific works
concerning the dynamic analysis of such structures are presented
in many papers. These works can be classified into five main sub-
jects of interest regarding geometrical or material considerations.
Thus, these works concern:

� multilayered four edges panels [3–16],
� multilayered non-cylindrical shells of revolution as conical
shells, spherical shells and circular plates [17–21],

� multilayered non-circular cylindrical shell [22–27],
� influence of geometrical or material irregularities on the
dynamic behaviour of multilayered circular cylindrical shells
[28–33],

� multilayered circular cylindrical shell.

The last subject concerns our paper and a more refined descrip-
tion is required. Three main subjects can be defined. The first one
concerns the development of improved shell theories. For example,
Khdeir et al. [34] have described a modification of the Sanders’
shell theory that takes into account a parabolic distribution of
the transverse shear strains to deal with the transient response
of circular cylindrical shells. Soldatos and Timarci [35,36] have
presented an unification of the classical Donnel-, Love- and
Sanders-type shell theories. More recently, Jin et al. have studied
such unification as well [37]. Tarn [38] derives a two-dimensional
theory with shear effect using an asymptotic expansion in three-
dimensional elasticity. By using the method of power series,
Matsunaga [39] has derived a higher-order theory that allows to take
into account transverse shear, normal strains and rotatory inertia.
The two other subjects concern the development of numerical
approaches for solving the problem of vibrations of circular cylindri-
cal laminated shells.

On one hand, specific formulations of the Finite Element
Method [40] or Rayleigh–Ritz procedures [41,42] are described
[43,44]. However, these methods have limitations and may require
a large amount of computer time, especially when the frequency
band widens, leading to a large system of equations. These meth-
ods are often restricted to low frequency applications.

In the other hand, analytical or semi-analytical methods are
developed to find alternative methods in order to reduce comput-
ing times and computer storage requirements while trying to
enhance the accuracy of the results over larger frequency ranges.
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The work presented in this paper is part of this trend. For example,
Nosier and Reddy derived an analytical approach based on Levy-
series type solution [45]. Zhang extended the wave propagation
approach to calculate the natural frequencies of such structures
[46]. Haftchenari et al. [47], Alibeigloo [48] studied the dynamic
behaviour of composite cylindrical shells using the Differential
Quadrature Method. More specifically, the latter was used to inves-
tigate the effect of edge conditions on the vibrations of anisotropic
laminated cylindrical shells. The Dynamic Stiffness Approach is
used by Chronopoulos et al. for analysing the harmonic response
of curved and cylindrical shells [49]. Fazzolari and Carrera
extended the hierarchical trigonometric Ritz formulation to deal
with vibrations of multilayered shell [50]. Xie et al. [51] used the
Haar Wavelet Method for computing natural vibrations of compos-
ite laminated cylindrical shells. Thinh and Nguyen [52] studied the
dynamic response of a cross-ply laminated composite cylindrical
shell with the dynamic stiffness method which is restricted to har-
monic loadings that are necessarily located on the free edges of the
shell. Distributed loads are not taken into account. This limitation
does not allow dealing with cylindrical shells subjected, for exam-
ple, to the action of external or internal fluids.

In this paper, the work is a direct continuation of a previous
study [53] that proposed a procedure for taking into account dis-
tributed loads in the dynamic stiffness formulation in the case of
axisymmetric shell structures made up with isotropic materials.
In the present work, the method is extended to the case of cross-
ply composite circular cylindrical shell as defined by Thinh and
Nguyen.

The dynamic stiffness method [54–56] is based on exact rela-
tionships between harmonic loadings located on the boundaries
of a structural element and the displacements of these boundaries.
Recent formulations concern all kinds of structural elements such
as functionally graded beams [57], composite plates [58–60] and
stiffened [61] and composite shells [15]. To take into account dis-
tributed forces acting inside the geometrical domain, the main idea
is to evaluate an equivalent loading located only on the edges. In
this paper, the calculation of this equivalent loading is described
and applied to thick cross-ply laminated composite cylindrical
shells. Both rotatory inertia and shear deformation effects are
taken into account. The accuracy of the proposed model is exam-
ined by comparing the solutions obtained using finite element
models.

2. Elastodynamic problem

2.1. Geometry

The geometry of the cylindrical structural elements studied in
this work is illustrated in Fig. 1.

The middle surface radius of the cylindrical shell is denoted R
and its length L. The shell is made up of N orthotropic layers per-
fectly bound together. The kth layer is located between the coordi-
nates fk and fkþ1 along the radial axis, therefore its thickness is
given by: hk ¼ fkþ1 � fk. For general cross-ply laminated shells,
the constitutive orthotropic material of the kth layer is oriented
with an angle hk. This angle is equal to 0� or 90� about the cylinder
axis. A local basis ðes; eh;nÞ is defined on each point of the middle
surface, see Fig. 1.

The position of each point of the shell is described in an orthog-
onal curvilinear system by three coordinates ðs; h; fÞ where s is the
longitudinal coordinate of the point along the axis of the shell, h is
the angular circumferential coordinate and f is the coordinate
along n about the midsurface. These coordinates are such that:

OMðs; h; fÞ ¼ OPðs; hÞ þ fn ð1Þ

P being the orthogonal projection of M on the middle surface of the
shell and OP ¼ Rnþ ses.

In this curvilinear coordinate system, the expression of the gra-
dient of a vector field V ¼ Vsðs; h; fÞes þ Vhðs; h; fÞeh þ V fðs; h; fÞef is
given by Eq. (2):
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2.2. Formulation of cross-ply laminated circular cylindrical shells

2.2.1. Kinematic assumptions
According to the Mindlin–Reissner theory, the amplitude of the

harmonic displacement field of point M is given by Eq. (3):

usðs; h; fÞ ¼ Usðs; hÞ þ f/hðs; hÞ
uhðs; h; fÞ ¼ Uhðs; hÞ þ f/sðs; hÞ
ufðs; h; fÞ ¼ Ufðx; hÞ

8><
>: ð3Þ

where us;uh and uf are displacement components along es, eh and n
respectively. Us;Uh and Uf are amplitude displacement components
of point Pðs; h;0Þ on the middle surface of the shell. /s;/h are the
rotations of the middle surface about es and eh, respectively.

With the assumption of small displacements, the strain–

displacement relationship � ¼ 1
2 rUþrTU
� �

is obtained by con-

sidering Eqs. (2) and (3). We obtain:
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2.3. Lamina constitutive relations

The stress–strain relations are the constitutive equations of the
orthotropic kth layer. These equations are given by [2] and, in the
case of a cross-ply laminated shell, they are reduced to:
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where Q ðkÞ
ij are the transformed stiffnesses of the kth lamina as a

function of the orientation h of the orthotropic material direction.
The expressions of these stiffnesses are given in Appendix A.

2.4. Shell behaviour equations

Relations between internal forces and section displacements of
the shell are the behaviour equations. These equations are given by
considering the internal forces per unit length, with the definition
given by:
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