
The method of fundamental solutions for three-dimensional inverse
geometric elasticity problems

A. Karageorghis a,⇑, D. Lesnic b, L. Marin c,d

aDepartment of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
bDepartment of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
cDepartment of Mathematics, Faculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei, 010014 Bucharest, Romania
d Institute of Solid Mechanics, Romanian Academy, 15 Constantin Mille, 010141 Bucharest, Romania

a r t i c l e i n f o

Article history:
Received 15 September 2015
Accepted 13 January 2016
Available online 1 February 2016

Keywords:
Method of fundamental solutions
Cauchy–Navier equations of elasticity
Inverse problems

a b s t r a c t

We investigate the numerical reconstruction of smooth star-shaped voids (rigid inclusions and cavities)
which are compactly contained in a three-dimensional isotropic linear elastic medium from a single set of
Cauchy data (i.e. nondestructive boundary displacement and traction measurements) on the accessible
outer boundary. This inverse geometric problem in three-dimensional elasticity is approximated using
the method of fundamental solutions (MFS). The parameters describing the boundary of the unknown
void, its centre, and the contraction and dilation factors employed for selecting the fictitious surfaces
where the MFS sources are to be positioned, are taken as unknowns of the problem. In this way, the orig-
inal inverse geometric problem is reduced to finding the minimum of a nonlinear least-squares functional
that measures the difference between the given and computed data, penalized with respect to both the
MFS constants and the derivative of the radial coordinates describing the position of the star-shaped void.
The interior source points are anchored and move with the void during the iterative reconstruction pro-
cedure. The feasibility of this new method is illustrated in several numerical examples.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In direct problems in solid mechanics, one has to determine the
response of a system when the governing partial differential equa-
tions (equilibrium equations), the constitutive and kinematics
equations, the initial and boundary conditions for the displacement
and/or traction vectors and the geometry of the domain occupied
by the solid are all known. However, if at least one of the above con-
ditions is partially or entirely lacking, then one has a so-called
inverse problem. Moreover, it is well-known that inverse problems
are in general unstable, in the sense that small measurement errors
in the input data may amplify significantly the errors in the solu-
tion, see e.g. [16]. Such inverse problems have been extensively
studied, both theoretically and numerically, over the last three dec-
ades and an overview of these developments can be found in [10].

In the case of inverse geometric problems in solid mechanics,
which represent an important subclass of inverse problems, the
geometry of the domain occupied by the solid is not entirely known,
however some additional information is available. More specifi-
cally, part of the boundary of the solution domain is not known

but either the displacements or the tractions are known on this por-
tion, whilst the remaining boundary is known and both displace-
ment and traction measurements are available on it. The inverse
geometric problems described above can be further subdivided into
two subclasses, depending on the location of the unknown
boundary, namely (i) identification of an unknown boundary or
corrosion-type problems (the unknown boundary is a part of the
outer boundary of the solution domain), see e.g. [27–29], and (ii)
identification of voids, i.e. cavities and rigid inclusions (the
unknown boundary is an inner boundary), see e.g. [12,21–23].

There are important studies that are devoted to the latter sub-
class of inverse geometric problems in elasticity. Alessandrini
et al. [1,2] proved that the volume (size) of a rigid inclusion in an
elastic isotropic body can be estimated by an easily expressed
quantity related to work, depending only on the boundary traction
and displacement. Morassi and Rosset [33] provided upper and
lower bounds on the size of unknown defects, such as cavities or
rigid inclusions, in an elastic body, from boundary measurements
of tractions and displacements. Later, they considered the inverse
problem of determining a rigid inclusion inside an isotropic elastic
body from a single set of Cauchy data on the outer boundary and
proved its uniqueness and conditional stability [34]. The issue of
uniqueness in determining cavities in a heterogeneous isotropic
elastic medium in two dimensions was investigated by Ang et al.
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[4], who used the unique continuation for the isotropic Lamé sys-
tem and geometric considerations. Ben Ameur et al. [8] developed
a rather general approach for identifiability and local Lipschitz sta-
bility of cavities in two and three spatial dimensions in linear elas-
ticity and thermo-elasticity. Ikehata and Itou [19] considered the
reconstruction problem of an unknown polygonal cavity in a homo-
geneous isotropic elastic body and provided an extraction formula
of the convex hull of the cavity using the enclosure method.

With respect to the numerical identification of voids in elastic-
ity, most of the studies available in the literature are devoted to the
two-dimensional case. A regularized boundary integral formula-
tion for the detection of flaws in planar structural membranes from
the displacement measurements given at some boundary locations
and the applied loading was proposed in [9]. Hsieh and Mura [18]
developed a combined boundary element method (BEM)-nonlinear
optimization algorithm for the detection of both the location and
the shape of an unknown cavity in an elastic medium. Mellings
and Aliabadi [30] presented a dual boundary element formulation
for the identification of the location and size of internal flaws in
two-dimensional structures. Kassab et al. [24] and Ulrich et al.
[37] investigated the non-destructive detection of internal cavities
in the inverse elastostatic problem using the BEM. The level set
method and a regularization technique related to the perimeter
of the unknown inclusion were employed by Ben Ameur et al. [7]
for the numerical reconstruction of a void from a single Cauchy
data. We finally mention that some three-dimensional elastody-
namic inverse problems have been solved using the BEM in [6,11].

In recent years the method of fundamental solutions (MFS),
originally proposed by Kupradze and Aleksidze [26] and intro-
duced as a numerical method by Mathon and Johnston [31], has
been used extensively for the numerical solution of inverse and
related problems primarily due to its ease of implementation. An
extensive survey of the applications of the MFS to inverse problems
is provided in [20]. It appears that the MFS was used for the first
time for the solution of inverse geometric problems in linear elas-
ticity by Alves and Martins [3], who adapted to the detection of
rigid inclusions or cavities in an elastic body the method of Kirsch
and Kress [25]. The method of [3] decomposes the inverse problem
into a linear and ill-posed part in which a Cauchy problem is solved
using the MFS and a nonlinear part in which the unknown bound-
ary of the void is sought as a zero level set for a rigid inclusion (or
computed iteratively, in an optimization scheme for a class of
approximating shapes, for a cavity). In contrast to this, Kara-
georghis et al. [21] adopted a fully nonlinear MFS in which the non-
linear and ill-posed parts are dealt with simultaneously using a
nonlinear regularized minimization. The reconstructions obtained
using this latter method are more accurate than those obtained
by decomposition methods, see e.g. [36].

The purpose of this paper is to extend to three-dimensional elas-
ticity the two-dimensional analysis of [21], the same way we have
done for the harmonic scalar case in [22,23]. In particular, we extend
the work of [23] to three-dimensional inverse geometric problems,
see also [12]. The paper is organized as follows: Section 2 is devoted
to the mathematical formulation of the inverse geometric problem
investigated. TheMFS discretization for this problem is described in
Section 3,whilst the implementational details are given in Section 4.
In Section 5, we investigate four examples. Finally, some concluding
remarks and possible future work are provided in Section 6.

2. The Cauchy–Navier equations of elasticity

2.1. The problem

We consider the boundary value problem in a bounded domain
X � R3 for the Cauchy–Navier system of elasticity for the displace-
ment u in the form (see e.g. [17])

lDuþ l
1� 2m

r � ru ¼ 0 in X; ð1aÞ

where l > 0 is the shear modulus and m 2 ð0;1=2Þ is the Poisson
ratio, subject to the Dirichlet boundary conditions

u ¼ f on @X2; ð1bÞ
and the homogeneous boundary conditions

auþ ð1� aÞt ¼ 0 on @X1; ð1cÞ
where a is 0 or 1. The inverse problem we are concerned with
consists of determining not only the displacement u, but also
the unknown inclusion X1 so that u satisfies the Cauchy–Navier
equations (1a), given the Dirichlet data f in (1b), the homoge-
neous boundary condition (1c) and the Neumann traction
measurements

t ¼ g on @X2: ð1dÞ
In the above, X ¼ X2 nX1, where X1 � X2, is a bounded annu-
lar domain with boundary @X ¼ @X1 [ @X2. The void X1 may
have many connected components, but X should be connected.
Eq. (1c), covers both homogeneous Dirichlet (a ¼ 1, i.e. X1 is a
rigid inclusion) and Neumann (a ¼ 0, i.e. X1 is a cavity)
boundary conditions on @X1. In (1c), t represents the traction
defined by

t ¼ rn on @X2: ð2Þ
In (2), the outward normal unit vector to the boundary at the point
ðx1; x2; x3Þ is denoted by nðx1; x2; x3Þ ¼ ðnx1 ;nx2 ;nx3 Þ, whilst r is the
stress tensor given, in terms of the strain tensor

e ¼ ruþ ruð ÞT
� �

=2, by Hooke’s law [17], namely

r ¼ 2l eþ m
1� 2m

trðeÞI
h i

in X; ð3Þ

where I is the 3� 3 identity matrix.
If the Dirichlet and Neumann data (1b) and (1d) are not identi-

cally zero, then the uniqueness of the solution pair ðu;X1Þ of the
inverse problem (1a)–(1d) holds, see [3].

3. The method of fundamental solutions (MFS)

In the application of the MFS to (1), we seek an approximation
to the solution of the three-dimensional Cauchy–Navier equations
of elasticity as a linear combination of fundamental solutions in the
form [35]

uNMða1;a2;b1
;b2

; c1; c2; n1; n2; xÞ

¼
X2
s¼1

XN
n¼1

XM
m¼1

Gðnsn;m; xÞ asn;m bs
n;m csn;m

h iT
; ð4Þ

where Gðn; xÞ ¼ Gijðn; xÞ
� �

16i;j63 is the fundamental solution matrix

for the displacement vector in three-dimensional isotropic linear
elasticity given by

Gðn; xÞ ¼ 1
16plð1� mÞ

1
jx� nj ð3� 4mÞI þ x� n

jx� nj �
x� n

jx� nj
� �

; ð5Þ

and the vectors as ¼ as1;1; a
s
1;2; . . . ; a

s
N;M

h i
; bs ¼ bs

1;1; b
s
1;2; . . . ; b

s
N;M

h i
and

cs ¼ cs1;1; c
s
1;2; . . . ; c

s
N;M

h i
; s ¼ 1;2, contain the unknown MFS coeffi-

cients. Similarly, from (2), (4) and (5), the tractions are approxi-
mated by [5]

tNMða1;a2;b1
;b2

; c1; c2; n1; n2; xÞ

¼
X2
s¼1

XN
n¼1

XM
m¼1

Tðnsn;m; xÞ asn;m bs
n;m csn;m

h iT
ð6Þ
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