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a b s t r a c t

We propose a method to compute equilibria in dynamic models with several continuous
state variables and occasionally binding constraints. These constraints induce non-
differentiabilities in policy functions. We develop an interpolation technique that
addresses this problem directly: It locates the non-differentiabilities and adds interpola-
tion nodes there. To handle this flexible grid, it uses Delaunay interpolation, a simplicial
interpolation technique. Hence, we call this method Adaptive Simplicial Interpolation
(ASI). We embed ASI into a time iteration algorithm to compute recursive equilibria in an
infinite horizon endowment economy where heterogeneous agents trade in a bond and a
stock subject to various trading constraints. We show that this method computes
equilibria accurately and outperforms other grid schemes by far.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In many applications of dynamic stochastic (general) equilibrium models, it is a natural modeling choice to include
constraints that are occasionally binding. Examples are models with borrowing constraints, limited commitment, a zero
bound on the nominal interest rate, or irreversible investments. These constraints induce non-differentiabilities in the policy
functions, which make it challenging to compute equilibria. In particular, standard interpolation techniques using non-
adaptive grids perform poorly both in terms of accuracy and shape of the computed policy function (see, e.g. Judd et al.,
2003, pp. 270–1). This paper proposes a method that overcomes these problems, even for models with several continuous
state variables. We call this method Adaptive Simplicial Interpolation (ASI). Its working principle is to locate the non-
differentiabilities that are induced by occasionally binding constraints, and to put additional interpolation nodes there.

We present our algorithm in the setting of a dynamic endowment economy where three or four (types of) agents face
aggregate and idiosyncratic risk. To explain the main features of ASI we first compute equilibria in a simple two period
version where agents trade in a bond subject to an ad hoc borrowing constraint. Second, we embed ASI into a time iteration

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jedc

Journal of Economic Dynamics & Control

0165-1889/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jedc.2013.09.007

n Corresponding author. Tel.: þ41 44 634 36 02/634 41 07; fax: þ49 17696045042.
E-mail address: johannes.brumm@googlemail.com (J. Brumm).

Journal of Economic Dynamics & Control 38 (2014) 142–160

www.sciencedirect.com/science/journal/01651889
www.elsevier.com/locate/jedc
http://dx.doi.org/10.1016/j.jedc.2013.09.007
http://dx.doi.org/10.1016/j.jedc.2013.09.007
http://dx.doi.org/10.1016/j.jedc.2013.09.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2013.09.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2013.09.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2013.09.007&domain=pdf
mailto:johannes.brumm@googlemail.com
http://dx.doi.org/10.1016/j.jedc.2013.09.007
http://dx.doi.org/10.1016/j.jedc.2013.09.007


algorithm to solve an infinite horizon version of the model. Finally, we add a Lucas tree-type stock, which is subject to a
short sale constraint, and we replace the ad hoc borrowing constraint by a collateral constraint. Consequently, short
positions in the bond need to be collateralized by stock holdings, while the stock may not be shorted.

Compared to earlier papers using a similar setup, such as Heaton and Lucas (1996), den Haan (2001) or Kubler and
Schmedders (2003), the models we consider differ in two respects, which both make it harder to compute equilibria: First,
we solve models with more agents, which result in a continuous state space of higher dimension. As the kinks1 naturally
form hypersurfaces in the state space, they are of higher dimension as well. Second, in our extension, the trading constraints
that agents face depend on tomorrow's equilibrium price of the stock, which is endogenously determined. Consequently, it
is much harder to locate the kink and ad hoc methods fail.

Fig. 1 illustrates the working principle of ASI. The dashed line displays a simple one-dimensional policy function with a
kink. Suppose this function is approximated by linear interpolation between equidistant gridpoints. The resulting
interpolated policy is displayed as a solid line on the left-hand side of Fig. 1. Clearly, the approximation error is
comparatively large around the kink, and this is just because there is no interpolation node near the kink. If we knew
the location of the kink and put a node there, then the approximation would be much better, as the right-hand side of Fig. 1
shows. This is the motivation for ASI, which directly addresses the problem of kinks in policy functions by placing additional
gridpoints, called adapted points, at these non-differentiabilities. In higher dimensional state spaces and with complex
constraints, this approach is not as simple as Fig. 1 suggests. Hence, we need a flexible interpolation technique and a
systematic adaptation procedure.

To be able to place gridpoints wherever needed, we use Delaunay interpolation, which consists of two steps. First, the
convex hull of the set of gridpoints is covered with simplices, which results in a so-called tessellation. Then we linearly
interpolate locally on each simplex.2

We adapt the grid as follows: First, we solve the system of equilibrium conditions on an initial grid. Second, we use these
solutions to determine which edges of the tessellation cross kinks. Third, on each of these edges, we solve a modified system
of equilibrium conditions to determine the point of intersection with the kink. Finally, we place a new grid point there.
Using this procedure with state spaces of more than one dimension, we get several adapted gridpoints for each kink.
Delaunay tessellation connects these points by edges, such that the kinks are matched very accurately.

To solve the above described infinite horizon models, we embed adaptive simplicial interpolation in a standard time
iteration algorithm (see, e.g. Judd, 1998). To assess the accuracy of the computed equilibria, we follow Judd (1992) in
calculating relative errors in Euler equations, subsequently called Euler errors. Concerning the measured Euler errors, we find
that our method accurately computes equilibria for the two economies considered, both for reasonable and extreme
calibrations of our model. Furthermore, we assess the relative performance of the adaptive grid scheme by comparing it to a
standard equidistant grid scheme using the same interpolation technique. We find that the adaptive grid scheme dominates
by far: One needs to increase the number of equidistant gridpoints, and thereby computation time, by more than two orders
of magnitude in order to reach the high accuracy of the adaptive grid scheme. Finally, we demonstrate that ad hoc update
procedures that place additional points near the kinks are much less efficient than ASI.

In the literature, many algorithms have been applied to dynamic models with occasionally binding constraints. However,
none of the existing algorithms address the problems of non-differentiabilities directly. Christiano and Fisher (2000)
compare how several algorithms compute equilibria in a one sector growth model with irreversible investment, which has
only one continuous state variable. None of the applied algorithms use an adaptive grid scheme. A grid structure which is
not adaptive, but endogenous, is proposed by Carrol (2006) and extended by Barillas and Fernández-Villaverde (2007),
Hintermaier and Koeniger (2010), and Ludwig and Schön (2013). This so-called endogenous grid method defines a grid
on tomorrow's variables, resulting in an endogenous grid on today's variables. Its major advantage is that it avoids the
root-finding step. Yet, as it exploits the specific mapping from next period's variables to today's variables, the applicability as
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Fig. 1. Non-adaptive (lhs) and adaptive (rhs) linear interpolation in 1D.

1 In our terminology, a kink associated with a certain constraint is the set of points at which the policy function fails to be differentiable because the
constraint is just binding, i.e. the constraint is binding and the associated multiplier is zero.

2 Linear simplicial interpolation is only C0 at the boundaries. For our purposes, this is desirable, because it provides a better fit at the kinks.
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