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a b s t r a c t

This paper proposes downside risk measure models in portfolio selection that captures
uncertainties both in distribution and in parameters. The worst-case distribution with
given information on the mean value and the covariance matrix is used, together with
ellipsoidal and polytopic uncertainty sets, to build-up this type of downside risk model.
As an application of the models, the tracking error portfolio selection problem is
considered. By lifting the vector variables to positive semidefinite matrix variables, we
obtain semidefinite programming formulations of the robust tracking portfolio models.
Numerical results are presented in tracking SSE50 of the Shanghai Stock Exchange.
Compared with the tracking error variance portfolio model and the equally weighted
strategy, the proposed models are more stable, have better accumulated wealth and have
much better Sharpe ratio in the investment period for the majority of observed instances.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In his seminal work, Roll (1992) proposed an active portfolio selection model in which the variance of tracking error of
portfolio is minimized and is used to measure how closely a portfolio follows the index. Motivated by Roll's work, many
researchers have worked on the active portfolio selection problems (see Alexander and Baptista, 2008; Jorion, 2003; Rudolf
et al., 1999; Zhao, 2007) and for more recent studies, refer to Chen et al. (2011), Chiu and Wong (2011), Guedj and Huang
(2009), Glode (2011) and Liu and Xu (2010). However, improvement is limited when the variance is used as a risk measure
since the gain and loss are symmetric to the mean value in the variance. Markowitz (1959) was aware of the shortcoming of
using variance and proposed using the semivariance of a portfolio to control risk. Bawa (1975), Bawa and Lindenberg (1977)
and Fishburn (1977) introduced a class of downside risk measure known as the lower partial moment (LPM) to better suit
different risk profits of the investors. Since the LPM can be used to control the loss of portfolio, it has become a popular
research topic in theory and practice (see Chen et al., 2011; Grootveld and Hallerbach, 1999; Harlow, 1991; Yu et al., 2006).

Let ξ be a random variable and ρ be constant. The LPM of random variable ξ with respect to ρ can be expressed as

LPMmðρÞ ¼ E½ ðρ�ξÞþ
� �m�
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where mZ0 is a constant that can reflect the attitude of investor to risk and ð�Þþ ¼maxð�;0Þ. Particularly, for m¼0,1,
LPMmðρÞ can be computed by

LPMmðρÞ ¼ E½ ðρ�ξÞþ
� �m� ¼ Pfξrρg; m¼ 0;

E½ðρ�ξÞþ �; m¼ 1;

(
ð1Þ

where E½�� and Pf�g express the expectation and probability of a random variable, respectively. Thus, LPM0 is no more than
the probability of random variable ξ falling below the target ρ and LPM1 is the expected shortfall of ξ falling below ρ.

There are two difficulties an investor would face if LPM were used to control the loss of a portfolio. One is that the exact
expression of LPM is almost impossible without knowing the exact distribution of a random variable ξ. Another is that the
estimating errors of the mean value and the variance of ξ cannot be avoided if the sample estimate of ξ is used in practice.
To overcome these difficulties, in the last decade portfolio models based on the robust optimization technique have become
a focal point of many researchers (see a recent survey Fabozzi et al., 2010 for details). A good case in point is Ben-Tal and
Nemirovski (1998). Two cases are commonly considered in this regard. One is parameter uncertainty, e.g., see, Costa and
Paiva (2002), Erdoğgany et al. (2004), Glabadanidis (2010), Goldfarb and Iyengar (2003), Ling and Xu (2012), Lu (2011) and
Zymler et al. (2011) and another is distribution uncertainty, e.g., see, Huang et al. (2008); Liu (2011); Miao and Wang (2011)
and Zymler et al. (2013). The two types of models, however, share a common weak point: the returns of risk assets in these
models are assumed to either follow a known distribution with uncertain parameters, or have the exact estimations of
parameters with uncertain distributions. In other words, they do not cover the case where both uncertainties arise together.

Our research in this paper will deal simultaneously with the uncertainties from both distribution and parameters. To
capture the distribution uncertainty, we consider a worst-case downside risk model, and to capture the parameter
uncertainty, we add more flexibilities to the model by allowing the parameters to change in either an ellipsoidal or a
polyhedral uncertainty set. The proposed model is different from that of Zhu and Fukushima (2009) and Zhu et al. (2009), in
which they proposed a robust framework based on downside risk constraints with discrete distribution. In order to enhance
computability, we consider an equivalent semidefinite programming (SDP) formulation by using convex duality principle. By
relaxing some vector decision variables into symmetric matrix variables, we obtain a tight SDP relaxation for the proposed
model. Our model is also different from the model of El Ghaoui et al. (2003), which considered the worst-case VaR robust
portfolio problem, a special case of downside risk. Besides, El Ghaoui et al. solve the worst-case VaR model using second
order cone programming (SOCP) instead of semidefinite programming (SDP) as is done in our paper. Numerical experiments
and comparisons based on Shanghai Stock Exchange 50 index (SSE50) are presented and discussed in detail to test the
performance of the proposed model. The numerical results indicate that the proposed robust tracking portfolio can track
well and outperform SSE50 in many cases. Comparisons with the variance tracking error portfolio model and the equally
weighted strategy indicate that our model's performance is more stable for different market data. In particular, we obtain
much better Sharpe ratio in the investment period.

In the rest of the paper, unless otherwise specified, we will use the bold lowercase, e.g. a; μ;…, to denote a vector, and use
N to denote the number of risky assets in benchmark. The other uppercase letters, e.g. A;B;Σ;…; will generally denote a
matrix. Conventional symbols such as Rn;Sn and Sn

þ are used to express respectively the spaces of n dimensional real
vector, n dimensional square matrix and n dimensional positive semidefinite matrix. The relationship of A�BASn

þ is
denoted by A≽B or A�B≽0. The inner product of two matrices A;B is denoted by A � B¼ traceðABÞ ¼∑n

i;jaijbij.
This paper is organized as follows. In Section 2, we define the worst-case downside risk measure and describe the robust

tracking error portfolio problem. SDP formulations of the worst-case downside risk measure and the robust tracking error
portfolio model are explored in Section 3. We report our numerical experiments and comparisons based on real market data
in Section 4. Section 5 includes conclusion and some technical details are given in the Appendix.

2. Worst-case downside risk and robust tracking model

Let rb be the random return of the tracked index (benchmark) consisting of N risky assets. Consider a tracking portfolio
consisting of n risky assets. Denote the returns vector of n risky assets by r¼ ðr1;…; rnÞT ARn, where ri is the gross return of
the ith risky asset. Then the tracking error of returns between the tracking portfolio and the benchmark is

ΔR¼ rb� ∑
n

i ¼ 1
riwi

wherew¼ ðw1;…;wnÞT ARn is the weights vector of the tracking portfolio with wi as the proportion invested in the ith risky
asset and satisfies the budget constraint ∑n

i ¼ 1wi ¼ 1. Let μb and μr be the expected returns of the benchmark and n risky
assets, (i.e. E½rb� ¼ μb and E½r� ¼ μr), respectively. Let the covariance matrix between rb and r be

G¼ s2b gT

g Σ

 !
;

where sb is the standard variance of the benchmark, g is the covariance vector between the n risky assets and the
benchmark, and Σ is the covariance matrix of the n risky assets. Assume that (I) noN and (II) matrices G and Σ are positive
definite. Assumption (I) means that we use fewer assets to track the benchmark. Assumption (I) in some sense is also
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