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a b s t r a c t

We propose a simple and powerful numerical algorithm to compute the transition process
in continuous-time dynamic equilibrium models with rare events. In this paper we
transform the dynamic system of stochastic differential equations into a system of
functional differential equations of the retarded type. We apply the Waveform Relaxation
algorithm, i.e., we provide a guess of the policy function and solve the resulting system of
(deterministic) ordinary differential equations by standard techniques. For parametric
restrictions, analytical solutions to the stochastic growth model and a novel solution to
Lucas' endogenous growth model under Poisson uncertainty are used to compute the
exact numerical error. We show how (potential) catastrophic events such as rare natural
disasters substantially affect the economic decisions of households.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The stochastic growth model in continuous time has received extensive study in the macro literature (following Merton,
1975; Chang and Malliaris, 1987).1 This benchmark economy gave rise to the development of advanced models for capturing
the main features of aggregate fluctuations, often referred to as dynamic stochastic general equilibrium (DSGE) models.
These models are the workhorse in dynamic macroeconomic theory. We use them to organize our thoughts, interpret
empirical data and for policy recommendations.

The literature on DSGE models, however, has been surprisingly quiet on the effects of large economic shocks such as natural
disasters and economic and/or financial crises. Most of the papers focus on small and frequent ‘business cycle shocks’. Therefore,
departures from Normal uncertainty are largely unexplored. But the simple awareness of large and rare ‘Poisson jumps’ leads to an
adjustment of households' optimal consumption plans. One crucial difference to business cycle shocks is that an econometrician
may not observe rare events for a longer period, and thus households might appear to be irrational.

In economic theory, however, we use Poisson events to model, e.g., natural disasters (Barro, 2006), technological
improvements (Wälde, 1999, 2005),2 exploration for exhaustible resources (Quyen, 1991), and financial market bubbles
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Howitt, 1992; Lentz and Mortensen, 2008).

Journal of Economic Dynamics & Control 37 (2013) 2602–2622

www.sciencedirect.com/science/journal/01651889
www.elsevier.com/locate/jedc
http://dx.doi.org/10.1016/j.jedc.2013.07.001
http://dx.doi.org/10.1016/j.jedc.2013.07.001
http://dx.doi.org/10.1016/j.jedc.2013.07.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2013.07.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2013.07.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2013.07.001&domain=pdf
mailto:olaf.posch@uni-hamburg.de
mailto:timo.trimborn@wiwi.uni-goettingen.de
http://dx.doi.org/10.1016/j.jedc.2013.07.001
http://dx.doi.org/10.1016/j.jedc.2013.07.001


(Miller and Weller, 1990). Similarly, from an empirical perspective, besides anecdotal catastrophic events such as the 2004
Sumatra–Andoman earthquake and tsunami (South Asia), the 2005 Hurricane Katrina (USA) and the recent 2011 Sendai
earthquake (Japan), rare disasters are found to have substantial asset pricing and welfare implications (Barro, 2009).
Moreover, there is empirical evidence for rare Poisson jumps (positive and negative) in US macro data (Posch, 2009).

For most applications, economists need to rely on numerical methods to compute the solutions to their models. Thus the
literature is making a huge effort in developing powerful computational methods (cf. Judd, 1992; Judd and Guu, 1997).
Unfortunately, no rigorous treatment of how to solve dynamic equilibrium models under Poisson uncertainty numerically
has been provided so far, and the effects of rare events on approximation errors are unknown.3

This paper proposes a simple and powerful method for determining the transition process in dynamic equilibrium
models under Poisson uncertainty numerically. It turns out that local approximation techniques are not applicable and most
global numerical recipes need to account for the specific nature of rare events. We show how to extend existing standard
algorithms when we allow for the possibility of rare events.

Our analysis builds on the continuous-time formulation of a stochastic neoclassical growth model based on Merton
(1975). We use the continuous-time formulation for two reasons.4 Firstly, we can easily compute stochastic differentials for
transformations based on random variables under Poisson uncertainty. Secondly, for reasonable parametric restrictions we
can solve the models by hand and obtain closed-form policy functions which can be used as a point of reference and to
compute the exact numerical error.5 From these benchmark solutions our numerical method is used to explore broader
parameterizations. Our idea is to transform the system of stochastic differential equations (SDEs) into a system of functional
differential equations of the retarded type (Hale, 1977). We apply the Waveform Relaxation algorithm, i.e., we provide a
guess of the policy function and solve the resulting system of (deterministic) ordinary differential equations (ODEs) by
standard techniques.

This procedure is applicable to models which imply a dynamic system of controlled SDEs under Poisson uncertainty.
The controls are Markov controls in the form of policy functions (cf. Sennewald, 2007). Although our method can also be
applied to Normal uncertainty, existing standard procedures can be used for this class of models (cf. Candler, 1999).
We therefore do not advocate the use of the Waveform Relaxation algorithm over alternative approaches in all cases and
applications. We aim at expanding the set of tools available to researchers by showing how to solve dynamic economies
under Poisson uncertainty.

We show that our solution method works. Although the suggested procedure computes the policy functions for the
complete state space — even for non-linear solutions — the maximum (absolute) error compared to the exact solutions is
very small. A strength of our approach is that existing algorithms are easily extended to allow for Poisson uncertainty.
We illustrate our approach for two popular methods computing numerical solutions to dynamic general equilibrium
models, i.e., the backward integration (Brunner and Strulik, 2002) and the Relaxation algorithm (Trimborn et al., 2008).
From an economic point of view, we find that (potential) large shocks affect optimal consumption and hours strategies.

The structure of the paper is as follows. In Section 2 of this paper, we describe the class of models of interest. In Section 3,
we describe the Waveform Relaxation method in detail and discuss alternative approaches. In Section 4, we present two
applications. The first is the stochastic growth model with rare disasters. We choose parameterizations that allow for
analytical solutions to compute the numerical error. The second is the Lucas model of endogenous growth including a novel
analytical solution under Poisson uncertainty. We conclude in Section 5.

2. The macroeconomic theory

This section introduces a broad class of economic models under Poisson uncertainty which can be solved by means of
Waveform Relaxation. Our algorithm (presented in Section 3.2) can be used to study transitional dynamics in models under
Poisson uncertainty. We show how standard numerical techniques, which compute the optimal time paths of variables, can
be extended to allow for Poisson uncertainty, i.e., how they can be used to solve a system of (stochastic) differential
equations. A discussion of alternative approaches is provided in Section 3.3. For this purpose, we develop our theoretical
framework in Section 2.1, and then present a simple procedure to obtain the (optimal) dynamic system in Section 2.2.

Our motivation stems from the rare disaster literature (Rietz, 1988; Barro, 2006, 2009). Hence, our illustrations are
mainly for rare events such as earthquakes or hurricanes which remove a certain fraction of the capital stock. Obviously, our
framework is not limited to this particular class of models. For example, infrequent productivity increases are found in the
endogenous growth literature (Wälde, 2005). In any case, below we demonstrate that models with rare (but potentially
large) economic shocks are conceptionally different from models with smaller shocks, e.g., ‘business cycle shocks’ resulting
from Normal uncertainty. In a nutshell, we show below that the Bellman equation for models under Poisson uncertainty is a

3 Generally most numerical methods are highly accurate locally (cf. Taylor and Uhlig, 1990; Christiano and Fisher, 2000; Schmitt-Grohé and Uribe,
2004; Aruoba et al., 2006).

4 Continuous time models under uncertainty are widely used in economics (for a survey see Wälde, 2011), a continuous-time New Keynesian model is
in Fernández-Villaverde et al. (2011).

5 Analytical solutions for parametric restrictions are frequently used in macro models (Turnovsky, 1993, 2000; Corsetti, 1997; Wälde, 2005, 2011;
Turnovsky and Smith, 2006; Posch, 2009).
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