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a b s t r a c t

We propose a nonlinear infinite moving average as an alternative to the standard state
space policy function for solving nonlinear DSGE models. Perturbation of the nonlinear
moving average policy function provides a direct mapping from a history of innovations to
endogenous variables, decomposes the contributions from individual orders of uncer-
tainty and nonlinearity, and enables familiar impulse response analysis in nonlinear
settings. When the linear approximation is saddle stable and free of unit roots, higher
order terms are likewise saddle stable and first order corrections for uncertainty are zero.
We derive the third order approximation explicitly, examine the accuracy of the method
using Euler equation tests, and compare with state space approximations.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Solving models with a higher than first order degree of accuracy is an important challenge for DSGE analysis with the
growing interest in nonlinearities. We introduce a novel policy function, the nonlinear infinite moving average, to
perturbation analysis in dynamic macroeconomics. This direct mapping from shocks to endogenous variables neatly
dissects the individual contributions of orders of nonlinearity and uncertainty to the impulse response functions (IRFs).
For economists interested in studying the transmission of shocks, our method offers new insight into the propagation
mechanism of nonlinear DSGE models.

The nonlinear moving average policy function chooses as its state variable basis the infinite history of past shocks.2

The nonlinear DSGE perturbation literature initiated by Gaspar and Judd (1997), Judd and Guu (1997), and Judd (1998,
Chapter 13) has thus far operated solely with state space methods.3 Our infinite dimensional approach is longstanding in
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methods currently more familiar to DSGE practitioners. See Woodford (1986) for a theoretical foundation of nonlinear DSGE solutions in this space of
infinite sequences of innovations.

3 See Collard and Juillard (2001a, 2001b), Jin and Judd (2002), Schmitt-Grohé and Uribe (2004), Anderson et al. (2006), Lombardo and Sutherland
(2007), and Kim et al. (2008). Recent work of Aruoba et al. (2012) links their quadratic autoregressive (QAR) time series model within a DSGE context to the
Volterra series expansion that we use as our solution basis.
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linear models and delivers the same solution as state space methods for linear models.4 For the nonlinear focus of this paper,
however, it provides a different solution. Deriving the direct mapping from shocks to endogenous variables—a Volterra series
expansion—facilitates familiar impulse response analysis and makes clear the caveats introduced by nonlinearity. These include
history dependence, asymmetries, a breakdown of superposition and scale invariance, as well as harmonic distortion.5

As highlighted by Gomme and Klein (2011) in their second order approximation, deriving perturbation solutions with
standard linear algebra increases the transparency of the technique and makes coding the method more straightforward.
In that vein, we adapt Vetter's (1973) multidimensional calculus to provide a mechanical system of differentiation
that maintains standard linear algebraic structures for arbitrarily high orders of approximation. We implement our
approach numerically by providing an add-on for the popular Dynare package.6 We then apply our method to the
stochastic growth model of Aruoba et al. (2006) for comparability and explore the resulting decomposition of the
contributing components of the responses of variables to exogenous shocks. We develop Euler equation error methods for
our infinite dimensional policy function and confirm that our moving average solution produces approximations with a
degree of accuracy comparable to state space solutions of the same order of approximation presented in Aruoba et al.
(2006).7

We make two assumptions on the first order (i.e., linear) approximation: it is saddle stable and it is free of unit roots. The
first is the standard Blanchard and Kahn (1980) assumption and we show that the resulting stability from the first order is
passed on to higher order terms. The second ensures the boundedness of corrections to constants and the two together
guarantee the local invertibility of a standard state space policy function to yield our infinite moving average.

The paper is organized as follows. The model and the nonlinear infinite moving average policy function are presented in
Section 2. In Section 3, we develop the numerical perturbation of our nonlinear infinite moving average policy function
explicitly out to the third order. We compare our policy function with state space policy functions in Section 4. We apply our
method to a standard stochastic growth model in Section 5, a widely used baseline for numerical methods in
macroeconomics. In Section 6, we develop Euler equation error methods for our infinite dimensional solution form and
quantify the accuracy of our method. Section 7 concludes.

2. Problem statement and solution form

We begin by introducing our class of models, a standard system of (nonlinear) second order expectational difference
equations. In contrast with the general practice in the literature, however, the solution will be a policy function that directly
maps from realizations of the exogenous innovations to the endogenous variables of interest. We then approximate the
solution with a Volterra series and present the matrix calculus used in subsequent sections.

2.1. Model class

We analyze a family of discrete-time rational expectations models given by

0¼ Et ½f ðyt�1; yt ; ytþ1;utÞ�; where ut ¼ ∑
1

i ¼ 0
Niεt�i ð1Þ

f is an ðneq� 1Þ vector valued function, continuously M-times (the order of approximation to be introduced subsequently)
differentiable in all its arguments; yt is an ðny� 1Þ vector of endogenous variables; the vector of exogenous variables ut
is of dimension ðnu� 1Þ and it is assumed that there are as many equations as endogenous variables ðneq¼ nyÞ. N is the
ðnu� nuÞ matrix of autoregressive coefficients of ut, presented here in moving average form. The eigenvalues of N are
assumed all inside the unit circle so that ut admits this infinite moving average representation; and εt is an ðne� 1Þ vector of
exogenous shocks of the same dimension ðnu¼ neÞ.8 εt is assumed independently and identically distributed such that
EðεtÞ ¼ 0 and Eðε⊗½n�

t Þ exists and is finite for all n up to and including the order of approximation to be introduced
subsequently.9

As is usual in perturbation methods, we introduce an auxiliary parameter s∈½0; 1� to scale the uncertainty in the model.
The value s¼ 1 corresponds to the “true” stochastic model under study and s¼ 0 represents the deterministic version of the

4 Compare, e.g., the state space representations of Uhlig (1999), Klein (2000), or Sims (2001) with the infinite moving-average representations of Muth
(1961), Whiteman (1983) or Taylor (1986).

5 See also Priestly (1988), Koop et al. (1996), Potter (2000), and Gourieroux and Jasiak (2005).
6 See Adjemian et al. (2011) for Dynare. Our add-on can be downloaded at http://www.wiwi.hu-berlin.de/professuren/vwl/wtm2/mitarbeiter/meyer-gohde.
7 Aruoba et al. (2006) also explore several global methods (projection, value function iteration) and our choice allows comparability to these other

methods. Our focus is on the alternative basis from the nonlinear moving average for local (perturbation) methods and we proceed accordingly.
8 Our software add-on forces N¼0 to align with Dynare (Adjemian et al., 2011). Thus in practice, the economist using Dynare must incorporate any

exogenous serial correlation by including ut in the vector yt. This choice is not made in the exposition here as the admissibility of serial correlation in the
exogenous driving force brings our first order derivation in line with earlier moving average approaches for linear models, e.g., Taylor (1986).

9 The notation ε⊗½n�
t represents Kronecker powers, ε⊗½n�

t is the nth fold Kronecker product of εt with itself: εt⊗εt…⊗εt|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n times

. For simulations, of course,

more specific decisions regarding the distribution of the exogenous processes will have to be made. Kim et al. (2008, p. 3402) emphasize that distributional
assumptions like these are not entirely local assumptions. Dynare (Adjemian et al., 2011) assumes normality of the underlying shocks.
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