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a b s t r a c t

The paper presents an algorithm for buckling analysis of thin-walled laminated composite beam-type
structures. One-dimensional finite element is employed under the assumptions of large displacements,
large rotation effects but small strains. The equilibrium equations of a prismatic and straight spatial beam
element are formulated using the virtual work principle. Stability analysis is performed in load deflection
manner using corotational formulation. The cross-section mid-line contour is assumed to remain not
deformed in its own plane, whereas the shear strains of middle surface are neglected. Laminates are mod-
elled on the basis of classical lamination theory. Results have been validated on test examples.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials are very suitable for structural applica-
tions where both high strength to weight and stiffness to weight
ratios are required. Fibre reinforced laminates in the form of
thin-walled beams have been increasingly used during the past
few decades in engineering practice, particularly in aerospace engi-
neering, shipbuilding, civil engineering and in the automobile
industry. Such weight-optimized structural components are com-
monly very susceptive to buckling failure because of their slender-
ness, so stability problems should be considered in their design [1].

Bauld and Tzeng [2] have extended Vlasov’s theory of bending
and twisting of thin-walled composite beams with an open
cross-section made from symmetric fibre-reinforced laminates.
Composite beams with arbitrary geometric and material sectional
properties have been studied in [3,4]. Bhaskar and Librescu [5]
have presented a geometrically non-linear theory of composite
thin-walled beams accounting for finite flexural displacements
and an arbitrarily large twist angle. Lee and Kim have presented
an analytical model which accounts for flexural–torsional buckling
of I-section composite beams [6] and an analytical model which
accounts for lateral buckling of thin-walled laminated channel-
section beams [7].

Cardoso et al. [8] have presented a finite element model for
structural analysis of composite laminated thin-walled beam
structures with geometrically non-linear behaviour, including

post-critical behaviour and warping deformation. Vo et al. [9,10]
analysed flexural–torsional coupled buckling of thin-walled com-
posite beams with arbitrary lay-ups. Silvestre, Camotim and
coworkers [11–13] have presented the formulation of a second-
order Generalised Beam Theory (GBT) developed to analyse the
buckling behaviour of composite thin-walled members and taking
into account both local and global deformation modes.

Barbero and Luciano [14] developed a micromechanical model
to characterize linear viscoelastic solids with periodic microstruc-
ture. Oliveira and Creus [15] have developed a study of viscoelastic
thin-walled straight beams by means of a non-linear approach
using finite shell elements. Piovan and Cortinez [16] have con-
structed a study on the linear viscoelastic behaviour of thin-
walled curved and straight beams with composite materials of
polymeric matrix.

The stability analysis can be performed using two different
approaches. In the first case, the stability analysis is performed in
an eigenvalue manner, which allows us to determine the instability
load of the structure in a direct manner without calculating the
exact magnitude of deformations. The lowest eigenvalue obtained
is recognized as the critical or buckling load and the corresponding
eigenvector the shape of buckling. In the second case, the stability
problems are investigated using the load–deflection manner
[17,18] by which the structural behaviour throughout the entire
range of loading of interest is evaluated, including the pre-
buckling and maybe post-buckling phase. That approach, known
as the non-linear stability analysis, when compared with the lin-
earized one provides information more reliably for imperfect or
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real structures and loading conditions with or without material
non-linearity, for which the eigenvalue approach generally gives
overestimated results. The non-linear response of a load-carrying
structure should be solved using numerical methods, e.g., the finite
element method and some of incremental descriptions like the
total and updated Lagrangian ones, respectively, or the corotational
description [19]. Each description utilizes a different structural
configuration for system quantities referring to and results as a
set of non-linear equilibrium equations of the structure. This set
can further be linearized and should be solved using some incre-
mental–iterative scheme.

In the Ref. [20], the same authors presented a non-linear beam
model based on the updated Lagrangian (UL) incremental descrip-
tion and non-linear cross-section displacement field which
accounts for the second order displacement terms due to large rota-
tions. Turkalj et al. [21] expanded that model for beam type struc-
tures with semi-rigid connections. Unlike previous papers [20,21],
this paper uses the corotational formulation as a well-known
approach to the development of efficient beam elements for non-
linear analysis of structures [22] and it deals with the viscoelastic
behaviour of composite laminated fibre-reinforced plastic beams.

The corotational description that has been used in this paper is
linear on element-level and all geometrically non-linear effects are
introduced through the transformation from the local coordinate
system to the global one. The local corotational system follows
the element chord during the deformation and allows the usage
of simplified strain–displacement relations on the local element-
level [23–25].

A finite element model for stability analysis of 3D framed struc-
tures with thin-walled laminated composite cross-section is pre-
sented in this paper. The beam cross-section geometry is
discretized by quadratic monitoring areas and the structural dis-
cretization is performed by the space beam finite element. The
model takes into account effects of large displacements on the
response of space frames subjected to conservative and static
external loads. The shear strain in the middle surface is assumed
to be zero and the cross-section is not distorted in its own plane.

Classical lamination theory of thin fibre-reinforced laminates
has been employed. The model is applicable to any arbitrary lam-
inate cross-section shape. Verification examples utilizing a numer-
ical algorithm developed on the basis of abovementioned
procedure have been presented to demonstrate the accuracy of this
model [26]. It seems that examples dealing with the space frames
where large rotations come to the fore have been poorly treated in
the open literature. The present model is found to be appropriate
and efficient in analysing complex structural behaviour under a
large displacement and rotation regime.

2. Theoretical background

2.1. Kinematics

Initially straight composite thin-walled beam with an arbitrary
but undeformable cross-section is considered. The points of the
structural member refer to the local Cartesian coordinate system
in which the beam axis that connects all cross-sectional centres
of gravity coincides with the z axis, while the x and y are the axes
of the cross-section, but not necessarily the principal ones. Addi-
tionally, a circumferential coordinate s and a normal coordinate n
are introduced into the middle contour of the cross-section.
Cross-sectional rigid-body displacements are:

w0 ¼ w0ðzÞ; u0 ¼ u0ðzÞ; v0 ¼ v0ðzÞ;

uz ¼ uzðzÞ; ux ¼ �dv0

dz
; uy ¼

du0

dz
; h ¼ �duz

dz
:

ð1Þ

In the above equations w0, u0 and v0 are the rigid-body transla-
tions in the z, x and y directions, respectively; while uz; ux and uy

are the rigid-body rotations around z, x and y axes, respectively.
Displacement h is a cross-sectional warping parameter.

Assuming that displacements and rotations are small in local
corotational coordinate system, the displacement components of
an arbitrary point of the cross-section can be expressed as:

w ¼ wo � y
dv0

dz
� x

du0

dz
�x

du0

dz
;

u ¼ u0 � y uz;

v ¼ v0 þ x uz

ð2Þ

where x and y define the position of the cross-section, while x is a
value of the cross-sectional warping function. Since it is assumed
that ezn = 0, the strain tensor e contains only two components, i.e.,

e ¼ ez
ezs

� �
ð3Þ

where from Eqs. (1) and (2) follows that:

ez ¼ dwo

dz
� y

dux

dz
� x

duy

dz
�x

d2uz

dz2
þ 1
2
ðx2 þ y2Þ duz

dz

� �2

; ð4Þ

ezs ¼ 2n
duz

dz
; ð5Þ

First-order approximation of the strain components is
employed in the above equations because a corotational approach
assumes small displacements in the local coordinate system. The
only quadratic term in Eq. (4) is necessary to model Wagner’s effect
[19,27].

The first variations of the strain tensor can be obtained from
Eqs. (4) and (5) as

de ¼ xed~e ð6Þ
where

d~eT ¼ ddwo
dz

ddux
dz

dduy
dz

d2duz
dz2

dduz
dz � duz

dz
dduz
dz

n o
ð7Þ

xe ¼ 1 �y �x �x ðx2 þ y2Þ 0
0 0 0 0 0 2n

" #
: ð8Þ

2.2. Internal forces

The stress tensor for the spatial beam element has two
components:

r ¼ rz

szs

� �
ð9Þ

Integrating over the laminate thickness n and the contour direc-
tion s, and transforming into the beam coordinate system, the
cross-sectional internal force components follow as:

Fz ¼
Z
A
rz dA; Mx ¼

Z
A
rzydA; My ¼ �

Z
A
rzxdA;

Mz ¼
Z
A
szsndA; Mx ¼

Z
A
rzxdA; Tr ¼

Z
A
rz ðx2 þ y2ÞdA

ð10Þ
where Fz represents the axial force, Fx and Fy are shear forces, Mz is
the St. Venant torsion moment, Mx and My are bending moments
with respect to the x and y axes, respectively, Mx is the bimoment
and Tr is Wagner coefficient [9]. Shear forces are treated as reactive
ones so that they can be determined as Fx = �dMy/dz and Fy = dMx/
dz. Thus, the vector of active internal forces
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