
Multiobjective structural optimization of frameworks using enumerative
topology

Kirk Martini ⇑
Department of Architecture, University of Virginia, PO Box 400122, Charlottesville, VA 22904, USA

a r t i c l e i n f o

Article history:
Received 8 December 2015
Accepted 20 May 2016
Available online 14 June 2016

Keywords:
Structural design
Evolution strategies
Multiobjective optimization
Topological optimization

a b s t r a c t

The paper describes a multiobjective optimization method aimed at supporting decisions in conceptual
design. The paper identifies five characteristics to achieve this intent. One of those characteristics con-
cerns accounting for variation configuration. The method introduces enumerative topology, a way of spec-
ifying structural configuration in terms of enumerative variables, such as the number of bays in a truss or
frame. This concept is distinct from conventional topological optimization which defines configuration by
specifying the presence or absence of members in a framework. The paper demonstrates the method on
two benchmark problems, and then presents extended versions which incorporate enumerative topology.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Optimization of structural frameworks is a mature field, with
dozens of papers presenting methods to solve a prototypical prob-
lem: given a model where selected properties are defined by a vec-
tor of decision variables, find a combination of variable values that
minimizes the weight of structural material, while satisfying con-
straints on structural strength, stiffness, and stability. While some
researchers have noted the potential of population-based struc-
tural optimization methods to support creative and conceptual
design [1–6], most published work has focused on the final stages
of design, where the structural configuration is well established,
and the goal is to find the feasible minimum-weight design. Typi-
cally, the configuration of the structure is largely, or even com-
pletely, set, and the optimization focusses on the selection of
member sizes, e.g. [7–10].

This paper describes and demonstrates a method oriented at
the earlier, more conceptual stages of design. The method is called
Vespo, for Variable Evolution Strategy for Pareto optimization. To
address some of the needs of conceptual design, the development
of Vespo defined the following characteristic goals:

1. Topology: Account for variations in structural topology.
2. Diversity: Generate a diverse population of alternatives.
3. Trade-offs: Account for trade-offs among multiple objectives.
4. Ability to approximate: Produce useful though suboptimal

answers with relatively few model evaluations.

5. Adaptability: Minimize the number of user-specified control
parameters.

The following discussion explains the motivations for these
goals, and the relation of these goals to preceding research in opti-
mization, and to Vespo.

The topology goal recognizes that determining topology and
configuration is a central task of conceptual design. A novel feature
of Vespo with respect to this goal is enumerative topology. The fol-
lowing discussion describes this feature, beginning with a general
discussion of types of decision variable commonly used in struc-
tural optimization.

Structural optimization of frameworks typically uses three
types of decision variable: shape variables, which determine spatial
dimensions of the structure; size variables, which determine the
cross sections for members in a framework; and topology variables,
which determine whether selective members in a framework are
active. As discussed above, there is a great deal of research devoted
to optimization solely with size variables. There is also research
aimed more at conceptual stages, which considers both size and
shape optimization [11,12], and some that considers size, shape,
and topology [1–3,13–16].

When topology is addressed in structural optimization, it is
usually a form that will be called selective topology, since the vari-
ables involved select which members are active [4,13]. A few
researchers have addressed other forms of topological optimiza-
tion. Rajeev [15] presented a method where decision variables
identified one of several options for configuring members in the
panel of a tower truss. In this method, it was possible for solution
vectors in the population to have differing numbers of decision

http://dx.doi.org/10.1016/j.compstruc.2016.05.020
0045-7949/� 2016 Elsevier Ltd. All rights reserved.

⇑ Tel.: +1 434 924 6445; fax: +1 434 982 2678.
E-mail address: martini@virginia.edu

Computers and Structures 173 (2016) 61–70

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2016.05.020&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2016.05.020
mailto:martini@virginia.edu
http://dx.doi.org/10.1016/j.compstruc.2016.05.020
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


variables, since the corresponding structures would have differing
numbers of members and cross sections; the method used a ver-
sion of a genetic algorithm (GA) modified to work with solutions
of differing length. Raich [5,6] also applied a GA that could accom-
modate varying topologies and solution vectors of different
lengths. von Buelow [1] also used GAs for topological optimization
without using a ground structure. The method separated the gen-
eration of topology from the optimization of size and shape. Solu-
tions of differing length were partitioned into distinct topology
groups. Compared with Rajeev’s method [15], the methods of Raich
[5] and von Buelow [1] were less restrictive and could generate a
wider range of topologies. Shea [2] applied simulated annealing
and shape grammars to similarly generate a wide range of topolo-
gies. Simulated annealing generates a new solution using only one
existing solution, rather than combining multiple solutions, so
accommodating solution vectors with differing lengths was
straightforward in Shea’s approach.

Vespo takes an approach to topology most similar to that of
Rajeev [15], and calls this approach enumerative topology, because
it includes decision variables that enumerate some aspect of struc-
tural configuration, such as the number of panels in a truss, or bays
in a frame. While the method presented by Rajeev [15] was poten-
tially powerful, there has been little subsequent development of
the concept, perhaps because it required complex custom logic to
convert from the binary string representation of the solution vector
to the corresponding structural configuration. Vespo addresses this
difficulty first by using real-valued encoding of solution vectors,
and more importantly taking advantage of currently available soft-
ware for parametric representation of geometry, such as Grasshop-
per in the Rhino environment [17], or Dynamo in the AutoCAD
environment [18]. In this context, ‘‘parametric representation” is
one where the user can define a complex geometric model that
incorporates a sequence of calculations. Changing a parameter
can trigger a cascading recalculation to revise the model, similar
to the recalculation of a spreadsheet. Vespo is implemented in
the Rhino–Grasshopper environment. Rhino is a general-purpose
CAD program, used widely in industrial design, and for conceptual
design in architecture. Grasshopper is a plug-in that supports para-
metric representation within Rhino.

Enumerative topology raises the issue of dealing with solution
vectors of differing length. As discussed above, Rajeev [15] and
Raich [5] addressed this problem with a GA modified with logic
to generate a new ‘‘offspring” solution from two existing ‘‘parent”
solutions of differing length. Shea [2] addressed this problem by
using simulated annealing, which generates a new offspring solu-
tion from only one existing parent solution. In this respect, Vespo’s
approach is most similar to Shea’s, in that it uses an Evolution
Strategy (ES), which like simulated annealing, generates a new off-
spring solution using only one parent solution, avoiding the logistic
problem of combining solutions of differing length. Details are dis-
cussed in Section 2.

The diversity goal concerns generating a wide range of alterna-
tives, rather than a single best solution. This goal reflects the
exploratory nature of conceptual design. As mentioned above, sev-
eral researchers have recognized the potential of population-based
metaheuristic optimization methods in generating alternatives. To
achieve this goal, such methods require a mechanism to preserve
diversity in the population of solutions, since without it, there is
a strong tendency for all solutions in the population to converge
[13,14]. Vespo maintains diversity by accounting for multiple
objectives, which also addresses the trade-off goal. Vespo is a
multi-objective optimization method that seeks to produce a
non-dominated Pareto set of solutions [19]. The method uses the
non-dominated sort algorithm of NGSA-II, developed by Deb [19].
Diversity, is maintained by comparing solutions in the space
defined by objective function values (i.e. objective space), rather

than by comparing solutions in the space defined by decision vari-
able values (i.e. decision space). Comparing in decision space is not
straightforward when decision vectors may have differing lengths;
the comparison in objective space is much simpler, since all solu-
tions have the same objective functions, irrespective of the number
of decision variables.

The ability-to-approximate goal concerns the trade-offs among
speed, precision, and consistency inherent in any optimization
problem. Speed concerns the computational resources needed to
obtain a solution set. Precision concerns how close that solution
set is to a ‘‘true” optimum or optimal set, which may be known
for published benchmarks, but in general is not known. Consis-
tency concerns the range of variation in results from multiple opti-
mization runs. In the literature, methods which produce a solution
with either greater speed or greater precision are considered to
perform better, and consistency is not always addressed. This com-
mon approach for comparing methods does not fully recognize
that the priorities of speed and precision may vary at different
stages of the design process. In conceptual design, where there is
interest in quickly comparing diverse alternatives, speed has rela-
tively high priority: a solution with 10% precision delivered quickly
may be more useful than a solution with 1% precision delivered
slowly. In contrast, in the final stages of design, a solution with
10% precision may be unacceptable, no matter how quickly
produced.

To address these different priorities of speed and precision, the
Vespo method is organized to obtain the most precise solution set
it can, given the number of model evaluations specified by the
designer. This is achieved through an adaptive control mechanism
described in Section 2.6. The value of this feature will be demon-
strated by comparing the Vespo method with other published
methods where Vespo uses many fewer model evaluations (i.e.
higher speed), and comparing the precision. Consistency is evalu-
ated by examining the variation among multiple runs.

The adaptability goal is also related to the tradeoff of speed and
precision. It is common that optimization methods include control
parameters that guide the search, e.g. the mutation rate in a GA.
The values of these parameters can strongly influence the speed,
precision, and consistency of the search, and may require experi-
mentation in finding appropriate values for a given problem. Such
experimentation can be good for precision, since it produces a good
end result, but may be bad for speed, since the experimentation
requires many model evaluations. As discussed above, speed has
a high priority in conceptual design, and so Vespo uses an adaptive
strategy for control parameters. The only parameters specified by
the user are the size of the solution population, and the number
of generations in an optimization run.

The remainder of the paper is organized as follows. Section 2
describes and explains the details of the algorithm. Section 3 pre-
sents application of the method to examples. The examples begin
with comparisons of two previously published benchmark prob-
lems, and then present variations on those problems that include
enumerative topology optimization. Section 4 closes with a sum-
mary of results and conclusions.

2. The Vespo algorithm

2.1. Overview

Like other population-based metaheuristic optimization meth-
ods, Vespo’s version of an ES begins with a randomly generated
population of solutions and then evolves that population through
generations of incremental improvement. Vespo belongs to the
family of ESs that produces a new solution solely through mutation
of a single existing solution, without a recombination operator

62 K. Martini / Computers and Structures 173 (2016) 61–70



Download English Version:

https://daneshyari.com/en/article/509873

Download Persian Version:

https://daneshyari.com/article/509873

Daneshyari.com

https://daneshyari.com/en/article/509873
https://daneshyari.com/article/509873
https://daneshyari.com

