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a b s t r a c t

In this paper, an extended finite element model is developed for accurate and effective modelling of the
tensile strain-hardening and multiple-cracking behaviour of engineered cementitious composites (ECC)
under uniaxial tension. The crack is modelled using the cohesive zone model with a simplified cohesive
constitutive model accounting for the matrix and fibre bridging effect, and multiple cohesive zones are
adaptively embedded within themodel upon the occurrence of sequential cracking based on the extended
finite element method (XFEM). The extended finite element model is implemented in the ABAQUS via the
user element subroutine (UEL) for the numerical analysis of the tensile behaviour of ECC. Material
randomness including random matrix flaws and random fibre distribution, which can significantly affect
the tensile behaviour of ECC, has been accounted for in the proposedmodel. Three ECCmixes aremodelled
and good agreement between the computed and experimental results demonstrates the effectiveness of
the proposed method for modelling the tensile behaviour of ECC. It is also shown that the two aspects of
material randomness should be considered simultaneously in the model.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

High performance fibre reinforced cementitious composites
(HPFRCC) are a relatively new class of fibre reinforced cement-
based materials emerged in recent decades, featuring macroscopic
pseudo strain-hardening behaviour in tension. Unlike conventional
fibre reinforced concrete (FRC), which undergoes tension softening
immediately after first cracking, HPFRCCs are of the capability to
carry further load with sequential development of multiple cracks
up to relatively high strain levels. Due to their excellent ductility,
enhanced energy absorption capacity and fracture toughness, the
research and application of HPFRCCs have attracted increasing
interests. Engineered cementitious composites (ECC) are a unique
group of HPFRCCs distinguished by extraordinary tensile ductility
with moderate fibre content, which have been achieved through
rigorous micromechanics-based design [1–3]. ECC reinforced by
polyethylene (PE) fibre or polyvinyl alcohol (PVA) fibre possess a
tensile strain capacity up to 3–6% with a fibre volume fraction of
about 2% [4,5]. Besides, the crack width in ECC is self-controlled
typically below 100 lm [6]. ECC exhibits considerably low water
permeability even in the cracked state with the tiny cracks, which
can noticeably decelerate the deterioration process caused by the

ingress of water [4]. The strain-hardening and microcracking
characteristics of ECC can significantly benefit the structural
strength and ductility, damage tolerance and repairability, making
ECC a superior construction material with excellent serviceability
and durability.

Although the tensile properties of ECC are closely dependent on
the multiple-cracking behaviour, the insightful relation between
the unique multiple-cracking behaviour and the extraordinary
tensile strain-hardening capability of ECC has not been well
understood so far. Several analytical models were developed to
analyse the tensile behaviour of ECC over the years. Kanda et al.
[7] proposed a bilinear tensile stress–strain model based on two
states, namely the first crack state and the ultimate state corre-
sponding to the initiation and termination of multiple cracking,
and theoretically predicted the two states by means of fracture
mechanics and micromechanics. Specifically, the ultimate tensile
strain was determined as the cracking strain by smearing the crack
opening at the peak bridging stress over the ultimate crack spacing,
assuming a uniform crack opening and spacing for the multiple
cracks. A similar model was adopted by Kabele [8], whereas the
nonuniform crack spacing was considered with an average crack-
ing strain obtained by smearing the total crack opening of all
cracks over the gauge length. In addition, the overall tensile strain
was determined by summing up the cracking strain and the elastic
tensile strain in the continuous materials between the cracks. In
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contrast to the bilinear model where the tensile stress–strain
relationship between the first crack state and the ultimate state
was approximated using interpolation, Kabele [9] derived the over-
all tensile stress–strain relationship of ECC with the consecutive
states of multiple cracking considered. During the multiple-
cracking process, the crack spacing evolves with an increasing
crack density till reaching the ultimate crack spacing at the ulti-
mate state. And an instant load drop followed by a gradual stress
recovery accompanies each cracking as the crack occurs and opens.
Kabele’s model can capture the sequential crack formation and
load fluctuations that are characteristic of the multiple-cracking
process. Cai [10] developed a statistical tensile stress–strain model
of multiple cracking by considering the cracks, which originate
from matrix flaws with a size distribution, to be activated at
different stress levels.

Numerical methods, such as the finite element method, have
been widely employed to analyse the mechanical behaviour of
materials and have been demonstrated to be efficient approaches.
However, very few numerical studies were conducted to clarify the
tensile behaviour of ECC, and this might be due to the numerical
difficulties in modelling the crack in cementitious materials [11].
Spagnoli [12] analysed the tensile behaviour of ECC by finite
element method using a two-dimensional triangular lattice model.
The cracking behaviour was incorporated in the material model,
which was assumed to be perfectly elastic up to a first cracking
stress followed by the post-cracking behaviour governed by the
matrix bridging and fibre bridging. Kabele [13] simulated the
tensile behaviour of ECC by means of stochastic finite element
method with spatial variation of material properties. The individ-
ual cracks were modelled using the crack band approach, and the

Nomenclature

ai, Dai standard degrees of freedom (DOFs) at node i and their
increment

a superscript denoting quantities associated with
standard DOFs

bj;k, Dbj;k enriched DOFs at node j for the k-th discontinuity and
their increment

bk superscript denoting quantities associated with
enriched DOFs

C elastic tangent stiffness matrix
c radius of matrix flaw
cmc critical flaw size separating inert and active flaws
c0 scale parameter of Weibull distribution of matrix flaw

size
df fibre diameter
Ec composite Young’s modulus
Ef fibre Young’s modulus
fext external force vector
fint internal force vector
fmat, fcoh contribution of continuous material and cohesive effect

over cracks to f int
F cumulative distribution function (CDF) of the initial

flaw size
Fn CFD of the representative flaw size in finite element

model
f fibre snubbing coefficient
Gf fibre shear modulus
Hk step function related to k-th discontinuity
KT overall tangent stiffness of the structure
Kmat, Kcoh contribution of continuous material and cohesive effect

over cracks to KT

Km matrix fracture toughness
Lf fibre length
m shape parameter of Weibull distribution of matrix flaw

size
nt outward normal vector of external boundary with

prescribed traction
nd;k outward normal vector of internal boundary at k-th

discontinuity
Rk rotational matrix related to k-th discontinuity
s standard deviation of Gaussian distribution of local fi-

bre volume fraction
s1, s2 coefficients defining the relation between flaw size and

correction factor
T tangent stiffness matrix of the cohesive law
�t prescribed traction on external boundary
�tk, tk, _tk global, local and incremental cohesive traction vector

at k-th discontinuity

tn, ts normal and tangential traction
u displacement field
u
_
, ~uk continuous displacement field and k-th discontinuous

displacement field
�u prescribed displacement on external boundary
Du incremental vector containing unknowns of Dai and

Dbj;k of all nodes
vk displacement jump at k-th discontinuity in global

coordinates
V f fibre volume fraction
V f min fibre volume fraction at the weakest fibre bridging

plane
V f0 mean of Gaussian distribution of local fibre volume

fraction
x coordinate vector
xd minimum crack spacing
v correction factor of the flaw size for calculating matrix

cracking strength
dk displacement jump at k-th discontinuity in local

coordinates
dn, ds crack opening displacement (COD) and crack sliding

displacement
dck, dpb COD at cracking stress and ultimate bridging stress in

the cohesive model
dnf COD at the kink point of the softening branch in the

cohesive model
du ultimate COD in the cohesive model
e Cauchy strain
C boundary
Ct, Cu external boundary with prescribed traction and

displacement
Cd;k internal boundary at k-th discontinuity
j correction factor accounting for the snubbing effect

when calculation xd
k dimensionless scaling factor in Fn
r Cauchy stress
rck matrix cracking strength
rpb ultimate crack bridging strength
rnf cohesive stress at kink point of the softening branch in

the cohesive model
X domain
Xþ

k , X
�
k two domains divided by the k-th discontinuity

I set of all nodes in the mesh
@k set of the nodes from the elements intersected by the

k-th discontinuity
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