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a b s t r a c t

This work addresses the complicated design problem in which a structure of multiple materials is topo-
logically optimized under the conditions of steady-state temperature and mechanical loading. First, the
general thermal stress coefficient (GTSC) is introduced to relate the thermal stress load to the design vari-
ables and address an engineering practice need by breaking down the previous assumption that the
Poisson’s ratios of all candidate materials are the same. Second, the Uniform Multiphase Materials
Interpolation (UMMI) scheme and the Rational Approximation of Material Properties (RAMP) scheme
are combined to parameterize material properties (e.g., the elasticity matrix and GTSC). In the problem
formulation, mass constraint is adopted to automatically determine the optimal match of candidate
materials instead of imposing the standard volume constraint to each material phase. An improved opti-
mization formulation with an artificial penalty term is also proposed to avoid a possible mixed material
status in the numerical results. Numerical tests illustrate the validity of the proposed method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, structural topology optimization has been rec-
ognized to be a challenging research topic in the engineering
design community. Standard compliance minimization with a sin-
gle material phase and pure mechanical loads was extended to var-
ious complicated design problems to achieve innovative structure
layouts. Recent developments in topology optimization were
reviewed in Refs. [1–3].

Topology optimization methods can generally be classified into
two types according to how the design variables are defined. The
first type involves the density method in which each design vari-
able is associated with a finite element and describes the presence
(1) or absence (0) of the solid material. To do this, a variety of
schemes have been developed to transform the original 0–1 dis-
crete optimization problem into a continuous one, such as the
homogenization method [4], SIMP (Solid Isotropic Material with
Penalization) scheme [5], RAMP (Rational Approximation of Mate-
rial Properties) scheme [6] and ESO (Evolutionary Structural Opti-
mization) method [7]. The second type handles topology
optimization as a generalized shape optimization problem with

design variables associated with the structural boundary. The level
set method [8] and the similar phase field method [9] are typical
examples.

Continuum topology optimization with multiphase materials
was first investigated by Thomsen [10]. Later, typical works
focused on the extension of the SIMP/RAMP schemes and handled
varieties of topology optimization problems with multiple materi-
als that include: the design of micro-structures with the extreme
equivalent property [11], thermo-elastic problem subjected to
the volume constraint [12] and multi-physics actuator design
[13]. Simultaneous design of the structural layout and discrete
fiber orientation was also dealt with using an extension of the SIMP
scheme, for example, the so-called DMO (Discrete Material Opti-
mization) scheme [14], SFP (Shape Functions with Penalization)
scheme [15] and BCP scheme (Bi-value Coding Parameterization)
[16]. Meanwhile, the ESO was also applied to address multiple
materials [17]. Similarly, an evolutionary approach using discrete
variables was proposed to solve the mass minimization problem
with multiple materials and strength constraints [18]. Alterna-
tively, the level set method and the phase field method were
applied to address multi-material topology optimization problems,
including both the stiffness maximization problem [19] and heat
conduction problem [20]. It should be noted that the implicit
description of the interfaces between two distinct solid material
phases is the basis of this approach. Some other schemes should
be mentioned here: Yin and Ananthasuresh [21] proposed a
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multi-material interpolation model based on the so-called peak
function; Jung and Gea [22] constructed a variable-inseparable
multi-material model for the design of an energy-absorbing struc-
ture; and Yoon [23] presented the so-called patch stacking method
for the nonlinear dynamic problem with multiple materials.

However, in most works, the material amount was controlled
by the volume constraint of each candidate phase. In the engineer-
ing design sense, the volume constraint is less significant than the
mass constraint of the whole structure. Although both constraints
are identical when only one single solid material phase is present,
the situation changes completely in the case of multiple materials
due to the differences in material densities. In previous work, the
mass constraint of multiple materials was investigated only for
the case using pure mechanical loads for the structural compliance
minimization [24]. Two interpolation schemes, namely, RMMI
(Recursive Multiphase Materials Interpolation) and UMMI (Uni-
form Multiphase Materials Interpolation), were discussed and
compared. It was also demonstrated that the mass constraint is
more beneficial than the volume constraint in the sense that the
former can further increase structural stiffness and automatically
match multiple material properties (i.e., Young’s modulus and den-
sity for the same amount of structure mass).

Comparatively, topology optimization of thermal structures is
more complicated because it belongs to a type of design-
dependent problem [25], with the thermal stress load changing
with the spatial distribution of solid material phases. Rodrigues
and Fernandes [26] adopted the homogenization method to formu-
late the thermal stress load for the mean compliance minimization.
Li et al. [27] used the ESO method with element thickness to be
design variables. An adjoint design sensitivity analysis method
[28] was developed for the topology optimization of weakly cou-
pled thermo-elastic problems. Structural rigidity optimization
with an initial design-dependent thermo-elastic stress field was
also presented [29]. Deng et al. [30] optimized the microstructure
of homogeneous porous material and macrostructure topology.
Pedersen and Pedersen [31] found that the minimization of the
maximum von-Mises stress could be achieved by applying a proce-
dure to obtain the uniform energy density. Recent results from
Zhang et al. [32] indicated that the elastic strain energy minimiza-
tion and mean compliance minimization led to different configura-
tions if thermal loads exist. The elastic strain energy minimization
particularly favors stress reduction. Multiple materials were taken
into account [12]. The concept of the thermal stress coefficient
(TSC) was introduced as the product between Young’s modulus
and the thermal expansion coefficient based on the assumption
that Poisson’s ratios of all candidate materials are the same. The
TSC was adopted later in the thermo-elastic topology optimization
of stress-constrained problems [33] and dynamic compliance min-
imization [34].

This work focuses on a topology optimization with multiple
materials under the mass constraint and the conditions of
steady-state temperature and mechanical loading. This paper is
organized as follows. In Section 2, the GTSC is introduced to relate
the thermal stress load to the design variables. In Section 3, the
UMMI and RAMP schemes are combined to parameterize the prop-
erties of multiple materials. In Section 4, the standard optimization
formulation of thermo-elastic structures and a sensitivity analysis
is first presented. Then, the formulation of the mass constraint is
presented and theoretically compared with the volume constraint.
Finally, the mixed material status by means of the standard
optimization formulation is illustrated and an improved optimiza-
tion formulation is proposed by the introduction of an artificial
penalty term with a variable parameter. In Section 5, numerical
examples illustrate the validity of the proposed optimization
method. In the last section, the conclusions and contributions are
presented.

2. General thermal stress coefficient

In this work, it is assumed that the material properties are
temperature-independent, and only the steady-state temperature
field is taken into account. As is well known for a finite element
model, the nodal vector of the thermal stress load of the ith ele-
ment is expressed as

Fth
i ¼

Z
Xi

BT
i Diethi dX ð1Þ

Here, Bi is element strain–displacement matrix consisting of ele-
ment shape function derivatives and is independent of the topology
design variables. Di is the parameterized elasticity matrix depen-
dent on Young’s modulus Ei and Poisson’s ratio li. Previously, Di

was expressed as a function of Young’s modulus and Poisson’s ratio
was assumed to be constant [12]. In this work, isotropic linear elas-
tic materials are used, and the elasticity matrix Di for 2D and 3D
problems can be written as

Di ¼ Eið1� liÞ
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for 3D problems

The thermal strain vector ethi is written as

ethi ¼ ai � Dti ð3Þ
where Dti denotes the temperature rise vector of the ith element.
The thermal expansion coefficient vector, ai, can be written as

ai ¼ ai/

/ ¼ 1 1 0½ � for 2D problems
/ ¼ 1 1 1 0 0 0½ � for 3D problems

ð4Þ

where ai is the thermal expansion coefficient of element i.
The substitution of ethi into Eq. (1) then produces

Fth
i ¼

Z
Xi

BT
i DiaiDtidX ð5Þ

Then, the thermal stress coefficient vector is defined as:

bi ¼ Diai ð6Þ
The substitution of Eqs. (2) and (4) into Eq. (6) yields

bi ¼
Eiai

1� 2li
/ ð7Þ

in which the GTSC can be defined below as

bi ¼
Eiai

1� 2li
ð8Þ

and can be treated as an inherent material property. For compar-
ison, in a previous work [12], the TSC was expressed as a function
of Young’s modulus and the thermal expansion coefficient because
Poisson’s ratios of all of the candidate materials were supposed the
same.
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