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a b s t r a c t

The objective of this paper is to assess the reliability and effectiveness of the method of finite spheres, a
truly meshless overlapping finite element method, for the solution of practical three-dimensional linear
elasticity problems. Advantages include simplified discretization and the elimination of element distor-
tion. The method is implemented in the ADINA finite element program through a user-supplied element
subroutine. The solutions of three increasingly complex three-dimensional problems are studied (1) to
establish the reliability of the method for practical linear elasticity problems and (2) to assess the effec-
tiveness of the method as compared to the standard finite element method. The solutions indicate that
the method of finite spheres is between one and two orders of magnitude more expensive in computa-
tional time than the standard finite element method. This is still a promising result since there are
significant time savings for the method of finite spheres during the pre-processing phase, particularly
in the discretization of complicated three-dimensional geometries and because the overlapping sphere
elements can be directly coupled to traditional finite elements.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The method of finite spheres is a truly meshless overlapping
finite element method developed to overcome the challenges in
mesh-based numerical methods. In the finite element method,
challenges include mesh generation for geometrically complex
domains, avoidance of severe element distortions, and mesh align-
ment and refinement for modeling problems with discontinuities
and singularities [1]. Mesh generation is time-consuming and
requires special attention to remove distorted elements, especially
for complex three-dimensional domains. Element distortion causes
a loss of predictive capability since the element is no longer able to
represent the same order of polynomials, leading to inaccuracies in
numerical integration and an overall loss of reliability and solution
accuracy [2]. In the method of finite spheres, overlapping sphere
elements simplify the discretization of complex three-
dimensional domains and eliminate the risk of distorted elements.

The challenges inmesh-based numericalmethods have attracted
substantial research efforts, leading to the development of numer-
ousmeshlessmethods [3–5]. Some of themost prominentmeshless
methods include smoothed particle hydrodynamics (SPH), the
diffuse element method (DEM), the element-free Galerkin method
(EFG), and the meshless local Petrov–Galerkin method (MLPG).
The method of finite spheres (MFS) inherently possesses the

advantages of meshless methods, and can also be thought of as a
reliable and efficient finite element method using overlapping
elements.

Smoothed particle hydrodynamics, one of the earliest develop-
ments in meshless methods, was originally used to model astro-
physical phenomena. The method has since been implemented
for a wide range of practical engineering applications, predomi-
nantly in the area of computational fluid dynamics, but also with
extensions to solid mechanics. Despite the inherent advantages
of being a meshless Lagrangian particle method, SPH possesses
some numerical complications such as tensile instability and spu-
rious boundary effects, which can lead to poor accuracy in the solu-
tion. Furthermore, generally a large number of particles and the
use of adjustable solution factors are required to obtain reasonable
accuracy, reducing the efficiency and robustness of the method.
Several modifications and corrections have been proposed to
restore consistency and accuracy of SPH, but further research
efforts are necessary before the method can be regarded as robust
and efficient for practical applications [6,7].

The diffuse element method was the first of many meshless
methods based on the Galerkin formulation. The method uses
moving least squares (MLS) to generate smooth approximations
based on a set of discretization points. Since DEM is a global weak
form method, a background mesh is required for numerical
integration, suggesting the method is only meshless with regard
to constructing interpolation functions. Furthermore, there are a
number of oversimplifications which affect the validity of the
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method. In particular, the derivative of the approximation functions
is evaluated only approximately, a very low quadrature rule for
numerical integration is applied, and the Dirichlet boundary condi-
tions are not accurately enforced. Consequently, DEM does not pass
the patch test and fails consistency requirements [8].

The element-free Galerkin method is an extension of DEM,
introducing a series of improvements which results in a more accu-
rate formulation at the expense of increased computational cost.
Specifically, EFG correctly evaluates the derivatives of the approx-
imation functions, employs a larger number of integration points
in the numerical integration procedure, and utilizes Lagrange mul-
tipliers to accurately enforce the Dirichlet boundary conditions.
The EFG method also uses MLS approximations to construct the
trial and test functions which provides reasonable accuracy, but
requires an expensive matrix inversion at every integration point.
Furthermore, there is an additional condition that at every integra-
tion point there is a minimum number of domains of influence that
must have nonzero support. These complications concerning
matrix inversion and overlap significantly reduce the computa-
tional efficiency of the method [9–12].

The meshless local Petrov–Galerkin method is a concept that
can adopt trial and test functions from different approximation
spaces, resulting in various formulations which offer flexibility to
deal with different boundary value problems. Various formulations
of the MLPG approach have been used to solve three-dimensional
elastostatics problems, using different test functions, such as the
Heaviside function or the Dirac delta function, and different
approximations, based on radial basis functions or moving least
squares. Unlike DEM and EFG, the MLPGmethod works with a local
weak form instead of a global weak form, which means that
numerical integration is performed over local subdomains rather
than using a background mesh or cell structure. Therefore, it is a
truly meshless method since a mesh is not required for either
interpolation or integration. However, with the approximation
functions based on the MLS approximation, the method suffers
from the same complications as DEM and EFG [13–15].

Although a variety of meshless techniques have been devel-
oped, the currently available reliable methods are much more
expensive than the finite element method and come with various
complications that affect their overall effectiveness. The method
of finite spheres incorporates advantages of the finite element
method and meshless methods and focuses on being both reliable
and computationally efficient. Early research demonstrated the
reliability of MFS for one- and two-dimensional linear analysis of
solids and fluids. Further research established a mixed displace-
ment/pressure formulation, improved numerical integration, finite
element coupling, enrichment strategies, automatic discretization,
genetic algorithms for numerical integration, and a scheme for the
analysis of wave propagation problems [16–25].

The focus of this paper is on assessing the reliability and effi-
ciency of the method of finite spheres for the analysis of practical
three-dimensional linear elastic problems, where the traditional
finite element method suffers from costly mesh generation and
errors resulting from element distortions. In Section 2, we develop
the theory and formulation of the method of finite spheres and
present an effective local approximation space for constructing
three-dimensional interpolation functions. Thereafter, in Section 3,
we propose a simple numerical integration scheme known as the
piecewise Gauss–Legendre quadrature rule for the integration of
the nonpolynomial functions over the three-dimensional spherical
domains. In Section 4,wediscuss our implementation of themethod
of finite spheres in a user element subroutine of ADINA. Then in
Section5,we study the solutions of three increasinglymore complex
three-dimensional analysis problems in order to establish the relia-
bility andassess the efficiencyofMFS for practical linear elastic anal-
ysis. Lastly, in Section 6,we summarize themajor developments and

discuss possible further research toward improving the efficiency of
the method.

2. Formulation of the method of finite spheres

In this section we present the theory and formulation of the
method of finite spheres for three-dimensional linear elasticity
problems. The presentation is largely based on Ref. [16].

2.1. Sphere discretization

Consider a general three-dimensional domain V with domain
boundary S = Su [ Sf, where Su is the Dirichlet boundary and Sf is
the Neumann boundary. The unit normal to the domain boundary,

n, is positive in the outward direction. Let fBðxI; rIÞ; I ¼ 1; . . . ;Ng
be a set of spheres, where xI and rI refer to the center coordinates
and radius of sphere BI, respectively, and where I is the nodal label of
each sphere and N is the total number of spheres. As illustrated in
Fig.1, spherescanbeclassifiedaseitheran interiororboundarysphere.

The requirements for a valid sphere discretization are (1) all
sphere centers must be within the domain, (2) the domain must
be completely covered by the union of all spheres, and (3) no
sphere can be completely included in any other sphere. Discretiza-
tion depends only on the position vector and radius of the spheres.
With overlapping elements, the method of finite spheres avoids
discretization difficulties and element distortion.

2.2. Interpolation scheme

The interpolation scheme for the method of finite spheres is
based on the partition of unity paradigm [26–28]. Interpolation
functions are defined as the product of Shepard functions and local
basis functions. An effective local approximation space is chosen
for three-dimensional linear elasticity problems.

2.2.1. Shepard partition of unity functions
The Shepard partition of unity functions are given by

u0
I ðxÞ ¼

WIPN
J¼1WJ

; I ¼ 1; . . . ;N ð1Þ

whereWI(x) denotes a positive radial weighting function. The Shep-
ard functions are nonpolynomial and have zeroth-order consis-
tency, ensuring that rigid body modes can be reproduced exactly.
The choice of weighting function should consider the continuity
class and the ease of differentiation and integration so that low-
cost partitions of unity are obtained. We choose the quartic spline
weighting function defined as

WIðsÞ ¼ 1� 6s2 þ 8s3 � 3s4; 0 6 s 6 1
0; s > 1

(
ð2Þ

where s = (kx � xIk)/rI.

Fig. 1. General three-dimensional domain V with domain boundary S = Su [ Sf.
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