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a b s t r a c t

The literature is filled with structural optimization articles which claim to minimize costs but which dis-
regard the costs of failure. Due to uncertainties, minimum cost can only be achieved by considering
expected consequences of failure. This article discusses challenges in solving real structural optimization
problems, taking into account expected consequences of failure. The solution developed herein combines
non-linear FE analysis (by positional FEM), structural reliability analysis, Artificial Neural Networks (used
as surrogates for objective function) and a hybrid Particle Swarm Optimization algorithm, which effi-
ciently solves for the global optimum. Optimization of a steel-frame transmission line tower is the appli-
cation example.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Optimization of real structural engineering systems is a
demanding task. Modeling the structural behavior of real struc-
tures requires numerical models (e.g., FEM) of many degrees of
freedom, which are computationally expensive to evaluate. Opti-
mizing such structures requires hundreds to thousands of struc-
tural response evaluations. And the resulting optimal structures
must be robust with respect to the uncertainties inherently present
in loads and in the strength of structural materials.

In a competitive environment, structural systems have to be de-
signed taking into account not just their functionality, but also ex-
pected construction and operational costs, and their capacity to
generate profits. This capacity can be adversely affected by the
costs of failure. Expected costs of failure quantitatively represent
the different risks that construction and operation of a given facil-
ity imply to the owner, to users, to employees, to the general public
and/or to the environment. Uncertainty implies risk, and the possi-
bility of undesirable structural responses.

In monetary terms, risk (or the expected cost of failure) is given
by the product of failure probabilities by failure costs. Failure prob-
abilities and failure consequences can be directly affected by struc-
tural design.

In structural engineering, economy and safety are generally con-
sidered to be competing goals. To the conventional structural engi-

neer, increasing safety implies greater costs, and reducing costs
may compromise safety. Hence, designing structural systems
would involve a tradeoff between safety and economy. In common
engineering practice, this tradeoff is addressed subjectively. When
using structural design codes, the tradeoff has already been decided
by a code committee, which specifies safety coefficients to be used
in design, and basic safety measures to be adopted in construction
and operation. In deterministic structural optimization, this trade-
off is completely neglected, because failure probabilities are not
quantified. In classical [1–16] Reliability-Based Design Optimiza-
tion (RBDO) the tradeoff between safety and economy is also not
addressed, because failure probabilities are constraints and not part
of the objective function. Robust design optimization [17,18]
searches for designs which are less sensitive to the existing uncer-
tainties, but safety-economy tradeoffs are also not addressed.

When expected costs of failure are included in the design equa-
tion [19–27], one realizes that economy and safety are, in fact, not
competing goals. Safety is just another design variable which di-
rectly affects expected costs of failure. Since failure probabilities
and consequences of failure are directly affected by structural de-
sign [28], optimum (minimum cost) design can only be achieved
by quantifying uncertainties, probabilities of failure and costs of
failure. In other words, optimum (minimum cost) design can only
be achieved by quantifying expected costs of failure, and by treat-
ing safety as (an indirect) design variable [28]. This is called struc-
tural risk optimization herein and in a few other Refs. [27–29].

Optimization of real structural engineering systems is a
demanding task. Even more demanding is the optimization of real
structural engineering systems in consideration of the several
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sources of uncertainty which may affect system performance.
Quantifying failure probabilities due to these uncertainties in-
volves structural reliability analyses, which require repetitive solu-
tions of the ‘‘deterministic’’ numerical FE models. When Monte
Carlo simulation is used, these may reach thousands to millions
for a single reliability analysis. Special subset simulation schemes
have been devised [6] for solving optimization problems under
uncertainty, but these are only effective for reduced numbers of
design variables. When the efficient First Order Reliability Method
(FORM) method is used for reliability analysis, still hundreds to
thousands structural responses may be needed for each reliability
analysis. When FORM is used, a nested optimization problem is ob-
tained [9–16]. For classical RBDO problems [1–16], where failure
probabilities are constraints and not design variables, a number
of approaches have been proposed to avoid the nested optimiza-
tion loops [9–16]. However, these shortcuts do not apply to risk
optimization problems.

The authors are not aware of any similar shortcuts to solving
structural risk optimization problems. Hence, each step in a risk
optimization solution requires at least one complete reliability
analysis, which represents hundreds to thousands of structural re-
sponse evaluations.

Moreover, it was found that risk optimization problems possess
many local minima [28]. Hence, local optimization algorithms can
at best improve a given initial design. Finding the (global) opti-
mum demands global optimization algorithms. This significantly
increases the difficulties, as global optimization algorithms require
evaluations of the objective function throughout the design space,
which is more demanding than local optimization. Each objective
function evaluation in risk optimization leads to a complete reli-
ability analysis, which requires many structural (mechanical) re-
sponse evaluations. Hence, the increase in computational cost is
compounding. In this article, a special hybrid BFGS–PSO algorithm
[30] is used to solve the global optimization problem. As direct
solution of this problem is very expensive, Artificial Neural Net-
works (ANN) are used as surrogate models for the objective func-
tion, in order to reduce the computational burden.

Another compounding difficulty arises when using global opti-
mization algorithms to solve structural optimization problems. Lo-
cal algorithms search for a better solution in a vicinity of a given
initial design, which is normally a feasible and well-behaved de-
sign. Global optimization algorithms, on the other hand, have to
test designs that are scattered all over the design space. Hence, it
is easy to arrive at weird structural configurations, which would
make no sense to a structural designer, but which end up being
tested by the optimization algorithm. Weird designs can even be-
long to the failure domain, that is, they are more likely to fail than
not. These weird designs can lead to numerical instabilities and
convergence difficulties for both the non-linear (FE) mechanical
models and for the reliability analysis algorithms.

In the present article, the positional finite element method is
used to compute non-linear structural responses [31–36]. The
positional FE method is a robust numerical analysis method, as it
allows computing large displacements under material non-lineari-
ties. In the positional FEM, the displaced configuration is the pri-
mary unknown: displacements and rotations are evaluated
afterwards. Equilibrium equations are evaluated in the displaced
configuration. Material points are located by configuration-change
functions and their gradients. Non-linear Cauchy-Green deforma-
tion measures are used, as well as their energy conjugate. Sec-
ond-order Piola–Kirchhoff stress tensors are considered. With
these stress–strain measures, the Saint Venant–Kirchhoff constitu-
tive relation is obtained. Stationarity of the total potential energy is
used to arrive at the equilibrium equations. The Newton–Raphson
method is used to solve the non-linear equations, with a consistent
tangent stiffness matrix.

The article is laid out as follows. In Section 2, the risk optimiza-
tion problem is formulated. Section 3 describes two different Arti-
ficial Neural Networks, which are used as surrogates to aid solution
of global risk optimization problems, as described in Section 4. Sec-
tion 5 presents results for an application problem, involving the
optimization of a powerline tower subject to random wind loads.
Concluding remarks are presented in Section 6.

The practical problem addressed in this article, and the main
difficulties to overcome, have strong similitude with some of the
viewpoints defended by Prof. G.I. Schuëller, to whom this Special Is-
sue is dedicated. Prof. G.I. Schuëller has been a strong advocate that
reliability analysis should be made compliant with large FE models
[37–43] and high stochastic dimensions [44–52]. Moreover, Prof.
Schuëller has been co-author of a number of significant articles
on structural optimization under uncertainties [53,49,54–57] and
has authored important benchmark reviews on this topic [16,17].
The real structural engineering example addressed herein does
not qualify as a truly large FE model, nor does it include high sto-
chastic dimensions. However, the example pushes on three other
important dimensions of the optimization problem: many design
variables, consideration of expected costs of failure and solution
for the global optimum.

2. Formulation: risk optimization problem

2.1. Structural reliability problem

Let X and d be vectors of structural system parameters. Vector
X represents all random or uncertain system parameters, and in-
cludes geometric characteristics, resistance properties of materials
or structural members, and loads. Some of these parameters are
random in nature; others cannot be quantified deterministically
due to uncertainty. Typically, resistance parameters can be repre-
sented as random variables and loads are modeled as random pro-
cesses of time. Vector d contains all deterministic design
variables, like nominal member dimensions, partial safety factors,
design life, parameters of inspection and maintenance programs,
etc. Vector d may also include some parameters of random vari-
ables in X; for instance, the mean of a random variable may be
a design variable.

The existence of uncertainty implies risk, that is, the possibility
of undesirable structural responses. The boundary between desir-
able and undesirable structural responses is given by limit state
functions g(X, d) = 0, such that:

Xf ðdÞ ¼ fxjgðx;dÞ 6 0g is the failure domain

XsðdÞ ¼ fxjgðx;dÞ > 0g is the survival domain ð1Þ

Each limit state describes one possible failure mode of the structure,
either in terms of serviceability or ultimate capacity. The probabil-
ity of undesirable structural response, or probability of failure, is gi-
ven by:

Pf ðdÞ ¼ P½X 2 Xf ðdÞ� ¼
Z

Xf
ðdÞfXðxÞdx ð2Þ

where fxðxÞ is the joint probability density function of vector X. The
probabilities of failure for individual limit states and for system fail-
ure can be evaluated using traditional structural reliability methods
such as FORM, SORM and Monte Carlo simulation [58,59].

In the risk optimization problem, reliability analyses have to be
repeated thousands of times. Hence, the algorithm used for reliabil-
ity analysis has to be very efficient. In this paper, reliability analyses
are performed by the First Order Reliability Method (FORM), which
is reasonably accurate and quite efficient. Importantly, the effi-
ciency of FORM is equivalent for structural configurations leading
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